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Contribution of [HMY’23]

1. New quantum search-to-decision reduction
* Based on a recent work of Aaronson, Atia, Susskind from quantum gravit
* Simple & Interesting properties: Locality preserving, with (quantum) advice
» Similar ideas implicitly appeared in previous works (quantum Goldreich-Levin, ...)

Open problem in [JQSY19]
2. Applications to Quantum Cryptography

* New public key encryption based on non-abelian group action

* Efficient flavor conversion of quantum bit commitments
previous: O (A%)-multiplicative factor [CLSO1,Yan22]

ours: 0(1)-additive factor
Concurrent work [GIMZ23]

Original motivation was
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Main Toolkit Background

Susskind cared a “macroscopic” quantum state of space-time

|BlackHole) + |NoBlackHole)
2

Susskind conjectured:

Complexity( Seeing interference between |v) and |w) )
~ Complexity( Mapping |v) to |w) or vice versa)

... | cannot understand why



Schrodinger's cat

1. Prepare a cat in ket.
|decaying)+|not)

7 )

2. Measure if a single atom decaying or not. (

3. If decaying kill the cat; do nothing otherwise.
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Schrodinger's cat

Can we efficiently
determine where are we?




Detecting interference

Distinguishing classical from guantum = Detecting interference (convexity)




Theorem for Schrodinger's cat

Our primary task is to distinguish the following two states.

Observing interference
) between |Alive) and |Dead)

has similar circuit size

[Aaronson, Atia, Susskind’20] This task is computationally equivalent to
the task to swap | j ) and | & ), meaning that a unitary U such that

Swapping
|Alive) and |Dead)

Detecting superposition in Schrodinger's cat is as hard as

resurrecting a dead cat to alive (Necromancy-hard)



Formal Theorem [Aaronson, Atia, Susskind arXiv:2009.07450]

Let |x), |y) be two orthogonal states, |Y) = lx)\;%m, ) = Ix>\;ily>‘

Forany A > 0, the following have the same circuit complexity up to O(1)
1) A unitary U such that

Ulx) + (x|U A = 1: perfect case
[(y[Ulx) + (x|Uly)| — A this covers the
2 Imperfect version

2) An algorithm A such that
|Pr[Aly) - 1] — Pr[A|¢p) - 1]| = A

[HMorimaeYamakawa]
We prove the same result with ancillary qubits, find some properties, ...



Proof by circuits

| j ) or 5@8 >< | A

Af

swap to distinguish

distinguish to swap



CS / Cryptographic interpretation

Search: Find x from y (or vice versa)

1) (Swapping) A unitary U such that
[{y|U]x) + (x|U]y)]
2
2) (Distinguishing) An algorithm A that distinguishes |1), |¢) with bias A, that is,
|Pr(A[y) - 1] — Pr[4|¢) > 1]| = A

=A

“Search-to-decision reduction” Decision: Determine if it is |) or |¢)

* (SAT) If we can efficiently decide if a formula has a solution,
then we can find a solution of a formula.

* (Crypto) If one-way function exists, then there is a unpredictable bit.

AAS equivalence theorem shows a new quantum search-to-decision reduction.



AAS theorem as search-to-decision reduction

AAS theorem is a new quantum search-to-decision reduction.
This is our main message.

Similar ideas are implicitly used in literature
* Quantum Goldreich-Levin theorem
» Some technical parts of collapsing/collapse-binding literatures (pure vs mixed instead of interference)

We found new applications in quantum cryptography
* Quantum-ciphertext public key encryptions from non-abelian group action
* Efficient flavor conversion of quantum bit commitments



Example: Quantum Goldreich-Levin theorem

One-way permutation is P:[N] = [N] that is

* easy to compute forward (], 0) = |x, P(x)) is easy for any x)
* hard to invert (|P(x),0) = |P(x),x) is hard for random x)
Question:

Can we extract "hard-to-predict” bit from this inversion-hard function?
[Goldreich-Levin] r - x is hard to compute given (P(x),r).

A quantum proof by [Adcock&Cleve'02]
We can interpret it using the equivalence theorem.



Example: Quantum Goldreich-Levin theorem

One-way permutation is P:[N] = [N] that is
* easy to compute forward (], 0) = |x, P(x)) is easy for any x)
* hard to invert (|P(x),0) = |P(x),x) is hard for random x)

Equivalently, it is hard to swap |P(x),0,0) and |P(x), 1, x)

By AAS equivalence, it is hard to dlstm%ws?l )
o X
IP(x)) ®




Example: Quantum Goldreich-Levin theorem
It is hard to distinguish
10,0) + |1, x)

[P(x)) @ 7

Measure the second parts on a Hadamard basis.
* |P(x))® X, |r- x,r)if the signis +
c |P(x))Q X |r-x @D 1,7r) if the sign is -

Two states are hard to distinguish,
l.e.,, computing r - x from (P(x),r) is hard!



Applications

Swapping |x) and |y) is equivalent to distinguishing
1x) £ [y)

« Quantum-ciphertext PKE from non-abelian group action
Previously, only minicrypt constructions are known

« Efficient flavor conversion of quantum bit commitment
Two definitions of commitments are essentially the same



Cryptographic (non-abelian) group action

Group G and set S, group action G X S —» S denoted by (g,s) » g - s:

e-s=s, g-(h-s)=1(gh)-s
(One-way) Hard to find g from (s,g - s) (s,g-s)+~ gis hard
(Pseudorandom) (s,g - s) looks like random (s, t) (s,g:s) = (s,t)

PKE from non-abelian group action is an open problem posed in [JQSY19]

Abelian group actions naturally allow Diffie-Hellman style key exchange
Alice: (g,g-s) Bob: (hh-s), share (g - s,h - s) then each can compute
(gh)-s=g-(h-s)=h-(g-s)=(hg)-s

[HMorimaeYamakawa] Quantum PKE from non-abelian group action



» Classical construction (possibility)

> Quantum construction (Our)

Contributions in diagram (+ more)

Abelian group action /

Symmetric key primitives
Nonabelian group action /

[HMorimaeYamakawa] Quantum PKE from non-abelian group action



PKE from non-abelian group action, idea

Possible via AAS equivalence theorem albeit with quantum ciphertexts
Encode bit in phase

For group action G X S — S, if a ciphertext of b is of the form
_10)s) + (=1D)[1)|g - 5)

b
|¢>_ \/E ‘o @

How to construct?

for random s € S, g € G.

AAS theorem: Distinguishing |¢°) from |¢1) is at least as hard as
finding a map from |s) to |g - s); it probably know g, breaking one-wayness



PKE from non-abelian group action

For a public key (s =s,s1 = g - 5), a ciphertext of b is of the form

[$P)ocl0) ) Iny+ (=D ) |h)
h:h-sq=y h:h-s{=y
for random y € S.
« easily constructible
1. Prepare Ypeql0)R) + (=1)2|1)| h)
2. Append new register and compute Y, cc[0)|h)|h - so) + (—1)P|1)|h)| h - s1)
3. Measure the last register to obtain y, which collapses to the ciphertext.

« if underlying action is pseudorandom then it is IND-CPA secure

« if underlying action is one-way, then it is IND-CPA secure .
... Or we can construct a one-shot signature

Cf) Inspired by the “win-win"” result of [Zha19]



(Non-interactive) Bit commitment

Sender A vs Receiver B

Sender commit a bit b,
and later can reveal “it's the commitment of b

[Committing] A commits bit b (say =1) with
"the commitment” ¢

[Opening] A reveals “the opening” o and
B convinces what was b (=1)




Security of Bit commitment

Sender A vs Receiver B

Sender commit a bit b,
and later can reveal “it's the commitment of b

Receiver cannot know b until reveal. Hiding

Sender can’t change b after commit. Binding

We want the binding/hiding statistically hold,
which is impossible (even for quantum)

Relax one of them by secure against
(non-uniform) polynomial time algorithms.

1. (Statistically) Hiding commitment
2. (Statistically) Binding commitment



(Canonical) Quantum bit commitment

Using quantum channels for communication

« Simpler constructions

* Inherently non-interactive [Yan22]

commit = register C >
A prepares |¢,)cr and sends C as a commitment,

sends R as an opening. ﬁ
 Efficient conversion of flavors [Yan22]
stat. hiding comp. binding < stat. binding comp. hiding
OO
open = register R >

[HMorimaeYamakawa] Better conversion
Two notions are essentially equivalent




More on AAS equivalence

v A |

Locality-preserving:
If A (or U) does not act on some qubits, then U (or A) does not act on those qubits either.

Advice version:
The theorem holds even if there is ancillary qubits (with a worse bound)



Efficient conversion (hiding < binding), idea

Up|0) = |dg)e and U;|0) = |¢p1)cr be the commitment states;

Sender holds the reveal register R
and sends the commitment register C.

Hiding/Biding have the following locality features.

(Hiding) [¢o)cr and |¢1)cr are hard to distinguish by unitary over C
(Binding) |¢o)cr and |¢1)cr are hard to swap by unitary over R

—_1\b
Let |y,) = |¢°>+(\/§1) 1) then AAS theorem says that

(Binding) swapping |¢o)cr and |¢1)cr
by unitary over R

distinguishing [¥o)cg and |¥1)cr
by unitary over R

(Hiding")

Not orthogonal



Our compiler
Up|0) = |po)cr and U;|0) = |¢p1)cr be the commitment states

The new commitment scheme commits b by

0)|po) + (=1)°[1)] )
V2

1) If original scheme is X-hiding then new scheme is X-binding

2) If original scheme if Y-binding then new scheme is Y-hiding
X,Y=perfect, statistical, computational

Concurrent work by Gunn,Ju,Ma,Zhandry



Conclusion

1. New quantum search-to-decision reduction based on the
equivalence theorem [AAS20] of detecting interference and
swapping two states, with some generalizations.

2. Showing the power of new reduction by applications
* New quantum-ciphertext PKE from non-abelian group action
e Efficient quantum commitment flavor conversion



Thanks!

Any question?



Annoying definition of “swapping”

Swapping advantage is highly non-standard.

Orthogonality/specific target are annoying.
71U + (x|Uly)]

A
2

We may need to do a large amount of extra works for obtaining a
bound on the usual definition something like:

[y |Ux)* + Kx|U|y)|?
2




Alternative version from [GIMZ23]

Hermitian W =11, — I1_; where I, are the +1 eigenspaces of W
A quantum state |y) is chosen by adversary.

Let |¢+) = I141|Y), the following two advantages are similar:

1) Distinguishing I1j |1) for unknown b € {£+1}.

2) Mapping I111[y) into any state in 134, or
[T, UTLy 1 [} |2

If we simply write IT, = |b)}{b| ® I and [y} = |0, x) + |1, y), it says TFAE:
1) Distinguishing |0, x) + |1, y)
2) Mapping |0, x) to |1,%)



Collapsing version from [Zha22]

Recall that distinguishing |x) + |y) is equivalent to the distinguishing

lx) + |y) and (1/2,%),(1/2,y)
which is equivalent to distinguishing |x) + |y) from its measurement result!
In general, we can extend it for one direction: let x; be orthogonal and let g: poly

W= 1x5.y)

0<j<q
we can show that distinguishing |y) from its measurement result using a binary
measurement P is hard if the following holds:
2
1. Measure |Yp) with {|x;){(x;| @ I} and obtain j with |x;, y;) with prob ||y])‘
2. Apply P to the result

3. Measure it again with {|x;}{(x;| ® I}, then whp the result is j again.



