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Deployment of QKD in real-world networks
|dentifying the roadblocks

* Smooth fusion with existing fibre-optic networks HHHE "%:

 Combining quantum and classical channels in one fibre

* High-speed systems for high secret key rate production ;lﬁ

» &

* Low cost, mass-produced, scalable, practical
* Integrated photonic circuits




Outline

I. QKD protocol: 3-state time-bin BB84 with 1 decoy state

II. QKD in network environment
I1l. QKD with high secret key rates

IV. High-speed integrated QKD




|. 3-state time-bin BB84 with 1 decoy state
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|. 3-state time-bin BB84 with 1 decoy state
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Rusca, D. et al. ‘Finite-key analysis for the 1-decoy
state QKD protocol’, Appl. Phys. Lett. 23 (2018)



basis, bit state 11 [io
. Z,0 0) . B a B
Experimental setup B a
* Gain-switched phase-randomised pulses at n o AR | aa
2.5 GHz and 1550 nm are generated
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Boaron, A. et al. 'Simple 2.5 GHz time-bin 7
quantum key distribution’, Appl. Phys. Lett. 23, (2018)



II. QKD in network environment



Motivations

* Wide-spread fibre-optics

communications network

Telecommunications Backbone Networks’

* Expensive to rent/maintain/place a dark fibre

* Merge quantum communication channels with existing classical
communication channels



Network integration of QKD system

* Combining quantum and classical channels:
Wavelength division multiplexing (WDM)

* Propagation loss in
C-band: ~ 0.2 dB/km
O-band: ~ 0.3 dB/km

e Classical channels most
often in C-band (1550 nm)

Image: The Fibre Optic Association
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Network integration of QKD system

* Combining quantum and classical channels:

Wavelength division multiplexing (WDM)

* Propagation loss in
C-band: ~ 0.2 dB/km
O-band: ~ 0.3 dB/km

e Classical channels most

Channel Classical | Quantum
Average >1 mW 1 nW
Power

often in C-band (1550 nm)
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Obstacles in presence of classical channel

* Imperfect isolation
* Proper filtering using coarse-WDM

 Scattering: Brioullin
» Separation b/w channels of two DWDM channels

* Scattering: Raman
e Main contribution to noise!



Raman scattering

QC in O-band
—_—

PhD Thesis, Fadri Griinenfelder, ‘Performance, Security and Network Integration of Simplified BB84 Quantum Key Distribution’
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Co- and counter-propagation

—100-
£
5
— —105-
Q
3
S .9 Raman scattering is isotropic!
Q — " . .
@ Fixed classical power
-
-
g —115-
G — CO-propagating
- counter-propagating
—12041 ; .

0 20 40 60 80 100
SSMF length (km)

PhD Thesis, Fadri Griinenfelder, ‘Performance, Security and Network Integration of Simplified BB84 Quantum Key Distribution’



WDM time-bin QKD

* Classical channel in C-band (1550 nm)
* Quantum channel in O-band (1310 nm)

* Co-propagating scheme
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Experimental setup: WDM time-bin QKD

Long-distance link
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Grunenfelder, F. et al. “The limits of multiplexing quantum and classical
channels: Case study of a 2.5 GHz discrete variable quantum key

distribution system’ Appl. Phys. Lett. 20 (2021) ”



Experimental setup: WDM time-bin QKD

Realistic link
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Gruinenfelder, F. et al. ‘“The limits of multiplexing quantum and classical
channels: Case study of a 2.5 GHz discrete variable quantum key
distribution system’ Appl. Phys. Lett. 20 (2021)
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Results

Distance (km)| Extra loss Classical Classical power | Secret key
(dB) power sent received rate (bps)
(dBm) (dBm)
95.5 0 8.9 -12.1 42
51.5 15.0 16.7 -11.8 172

Grinenfelder, F. et al. ‘“The limits of multiplexing quantum and classical
channels: Case study of a 2.5 GHz discrete variable quantum key
distribution system’ Appl. Phys. Lett. 20 (2021)




Comparisons
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1. High secret key rate QKD

(iBa HSLUtz

In collab. with:



Motivations

* Encrypted video-conf.*: 6 Mbps

* How high SKRs can our system
acheive?

21

*: US Federal Communications Commission



High secret key rate QKD

* Necessary conditions to perform a high-
rate secret key exchange:
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3. Fast post-processing as well as the real- 0.0 .
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Experimental setup: High-SKR

Gain switched
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Experimental setup: High-SKR
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Grunenfelder, F. et al. ‘Fast single-photon detectors and real-time key distillation enable high
secret-key-rate quantum key distribution systems’, Nat. Photon. 17, 422—-426 (2023)
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Talk: Giovanni Resta, Friday!
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Resta, V.G. et al., Gigahertz Detection Rates and Dynamic Photon-Number
Resolution with Superconducting Nanowire Arrays, Nano Lett. 2023



NB. Scale of x-axes!

Detectors
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Grinenfelder, F. et al. ‘Fast single-photon detectors and real-
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Results
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IV. High-speed integrated QKD

in collab, with:  POLITECNICO GDQ sicoya @CNRIEN
. . MILANO 1863 28



Integrated photonics

Image: Transmitter
Advantages:

low cost,
small footprint,
mass production,

reliable,

low power consumption,

29



Transmitter — Alice

Fiber-based transmitter

Interferometer, intensity

modulator, variable attenuator,
DAC, RF-amplifier

Integrated transmitter

30



Transmitter — Alice

e Based on silicon photonics

* Footprint: 1.1 mm x 4.5 mm

Platform choice
Pros: Small footprint, PIC and EIC,
fast modulation

Cons: Cannot integrate laser

31



Transmitter — Alice
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Receiver - Bob

* Based on silica

* Fabricated at CNR — IFN, Milano (R.
Osellame) using femtosecond laser
micromachining technique

Platform choice

Pros: Low loss (3 dB), polarization

insensitive

Cons: Cannot integrate detector,
«large» footprint (8 cm x 6 cm)
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delay
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Full experimental setup: Integrated QKD

ALICE s B =10, -
. Laser @

SC

Sax, R. et al. ‘High-speed integrated QKD
system’ Photon. Res. 11, 1007-1014 (2023) 34



Results: InGaAs/InP detectors

Distance Raw key rate | QBER, (%) | Phi, (%) | Secret key rate
(kbps) (kbps)
150 km 18.0 3.6 2.1 2.9
150 km 23.0 3.2 2.1 7.2

QBER = quantum bit error rate

Phi, = phase error rate

Boaron, A. et al. ‘Simple
2.5 GHz time-bin

quantum key distribution’,
Appl. Phys. Lett. 23, (2018)

Sax, R. et al. "High-speed integrated QKD
system’ Photon. Res. 11, 1007-1014 (2023)



Conclusion

* QCin O-band and CC in C-band: possible key generation in a high-loss link
* Record high-SKR QKD at metropolitian and longer distances
* Integrated QKD at long distances with competetive SKRs and low QBERs
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Ongoing work
* Integrated QKD: practical prototype!
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On behalf of the Quantum Technologies group and IDQ
partners in
Geneva:

+ Sylvain El-Khoury

Thank you for your attention!
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