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» Alice chooses a random bit U and encodes it in the phase of a
coherent state.

» Bob measures the relative phase between consecutive pulses.
> |f they see too many errors, they abort the protocol.
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= We need a lower-bound on H;; (X"|E).



This can be achieved by the generalized entropy accumulation
theorem (GEAT).
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where 1 is the single-round von Neumann entropy.
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The GEAT provides the bound:
Hin (X" En) MyyooMy (pin) 2 1 — O(Vn),
where 1 is the single-round von Neumann entropy.

Core questions:
Q1 What are Mq,..., M,?
Q2 How to compute h?



Q1 What are the channels?
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To apply the GEAT we identify: E;R; — FE;.



Q2 How to compute the single-
round entropy?
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We work in an entanglement-based picture: In-
stead of Alice sending |+a)s she sends half of
an entangled state:

W)ys = %mw ® [+a)s + %mr] ® |-a)s,

and measures U locally to obtain her key bit.
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and measures U locally to obtain her key bit.
Bob receives a state psr from Eve and

performs the phase coherence measurement
discussed previously.

Due to the squashing, we can assume that
Eve’s attack produces qubits.



U = Optimize over all attack channels:

— 3 !/ ~
h —11‘%fH(U|E R,

S st tr[D@y] =40,
E e E where the optimization is over all maps
S
3
RS

and v(€) is the state after Alice and Bob
measure (Zy ® &)(|¢¥){(Y|us).




= Optimize over all attack channels:
h=inf HU|E'R) 2
nf H(UIE'R)

s.t. tr[l“(i)y] =~

where the optimization is over all maps
S

£
RS
and v(&) is the state after Alice and Bob
measure (Zy ® &)(|¢¥){(Y|us).

Can be solved using known optimization
techniques.



Results and Discussion



key rate

102

- - = Asymptotic
—n =101
—n=10"
——n = 10"
—n=10°%

1073

1074

TN T VT

107°
1073

1072

1071

10°



QBER

0.14 | | Insecure according to Curty et al. (2008)

0.12

0.10

0.08

0.06

0.04

0.02

107°

1074

1073
n

1072



QBER

0.14 | | = Insecure according to Curty et al. (2008)
[ Secure with non-signalling condition

0.12
0.10
0.08
0.06
0.04

0.02

107°

1074

1072

1071



0.14 Insecure according to Curty et al. (2008)
Secure with non-signalling condition

0.12

0.10

0.08

QBER

0.06

0.04

0.02

T A T R | T N | T B N
1075 10~ 1073 102 107!
n

Coherent attacks on DPS are stronger than collective attacks!



Conclusion
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It is possible to prove security of the DPS protocol using the
generalized entropy accumulation theorem.

This requires a non-signalling constraint on Eve’s attack.

Tools from causality can be used to define the channels and
evaluate single-round entropies.

A constraint of this form is necessary if one wishes to reduce
analysis to collective attacks (as the EAT and many other
techniques do).
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