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Introduction

Although the standard BB84 protocol assumes the emission of single photons, ideal single-
photon sources remain difficult.

In practice: Phase-randomized attenuated laser pulses
mm) Classical mixture of photon-number states
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Since u < 0.5, most emissions have zero or one photons, but some have multiple.



PNS attack and decoy-state method
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guantum channel on single-photon states

!

bound Eve’s information and distill a secret key

Same key-rate scaling as with ideal single-photon source.
Most QKD implementations and commercial systems use it.

[1] Brassard, G., Litkenhaus, N., Mor, T. & Sanders, B. C. Phys. Rev. Lett. 85, 1330-1333 (2000).
[2] Lo, H.-K., Ma, X. & Chen, K. Phys. Rev. Lett. 94, 230504 (2005); Wang, X.-B. Phys. Rev. Lett. 94, 230503 (2005).



Imperfect phase randomization

Fundamental assumption

2

T d6 , . . -
pha= | 5 WEEOKVEE®] = g Inknl
0 n=0

Two experimental approaches for phase randomization:
- Passive: Turn the laser on and off between pulses.
- Active: Modulate a random phase value into the pulse.

In practice, it may not be possible to satisfy this condition perfectly.
m=) Existing proofs may not be able to guarantee the security of many QKD
experiments and commercial systems.

We have developed two security analyses that address this problem



Passive phase randomization

The laser is turned on and off between pulses via gain switching, assuming that the phases will be
completely random.

However, experiments(®2l have found correlations between the phases of consecutive pulses,
especially when the sources are run at high speeds.

We have developed a security proof that takes into account these correlations:

Security of quantum key distribution with imperfect phase randomisation

The performance of quantum key distribution (QKD) is severely limited by multiphoton emissions,
due to the photon-number-splitting attack. The most efficient solution, the decoy-state method,
requires that the phases of all transmitted pulses are independent and uniformly random. In practice,
however, these phases are often correlated, especially in high-speed systems, which opens a security
loophole. Here, we address this pressing problem by providing a security proof for decoy-state
QKD with correlated phases that offers key rates close to the ideal scenario. Our work paves the

way towards high-performance secure QKD with practical laser sources, and may have applications
beyond QKD.

[1] T. Kobayashi, ATomita, A. Okamoto, Physical Review A 90, 032320 (2014);
[2] F. Griinenfelder, A. Boaron, D. Rusca, A. Martin, H. Zbinden, Applied Physics Letters 117, 144003 (2020).



Assumptions of our proof

Our proof does not require full characterization of the phase probability distribution.
Only needs the following knowledge:

Bound on maximum memory (i.e., correlation length) Eg. ifl =1
g, ifl,

f(@ilpi—1.-b1) = f(PilPi—1--Pi-1.) for known [, /*\

Lower bound on conditional density function

q
f(@bilpi—i, - Pi—1Piv1-Piv1,) 2 o for known g

Quantifies how close the conditional distribution is to
ideal case (uniform), given all possible side information
(previous and following phases).



Security proof (main idea)

Objective: Show that the actual protocol is equivalent to a scenario in which Alice’s source is
characterized and iid.

Suppose that pgiopar = E(PSne1), Where prgger is known

==) We can assume that Alice generates pm(])\’del and € is part of the channel

We can finish the security proof using numerical methods based Pmodel = |;|E - R
on semidefinite programming.

This idea and some proof steps come from:
Nahar, S. MSc Thesis. (University of Waterloo, 2022)



Reduction to uncorrelated scenario (sketch for [, = 1)

Divide rounds into even and odd. Prove security independently for each sub-protocol. When
proving security of e.g., even sub-protocol, assume that ¢,3q = ¢1¢P5 ... is fixed.

Due to [, = 1, conditioned on $Odd, the state of the even rounds is Peven = ® P((aif)en, where

i is even
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Reduction to uncorrelated scenario ([, = 1)

- e : _ (1)
Conditioned on ¢, 44, the state of the even rounds is Peven = ® Peven , where

[ is even
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Define:  Pmodel = 4 Ppr + (1 — @) VXA
E;: Shifts the i-th phase according to the noise PDF f’(qbl-lqgodd)

J QXN/2
Then, pg/)en — gi(pmodel) -> Peven = & (pmoc{el)'

=) \We can prove the security of the even sub-protocol assuming that Alice sends states like podel-
(Likewise for the odd sub-protocol)

The proof is generalizable to any correlation length [...
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) We can obtain good key rates even when 10-8 1 ] , A
q is far from ideal! 0 20 40 60 80

Alice-Bob loss (dB)

The value of g can be characterized using experimental data under reasonable™ assumptions
(work is under way to develop more rigorous characterization tests — see poster by Alessandro Marcomini)

Decoy-state QKD with passive phase randomization is robust against correlations!

[1] T. Kobayashi, A.Tomita, A. Okamoto, Physical Review A 90, 032320 (2014);
[2] F. Grinenfelder, A. Boaron, D. Rusca, A. Martin, H. Zbinden, Applied Physics Letters 117, 144003 (2020).



Active phase randomization

In active phase randomization an external phase modulator driven by a quantum random number
generator is used for phase randomization.

This approach is used in certain applications (23! |like in chip-based QKD.

A security proof to account for experimental imperfections in an active setup is needed.

Secret key rate bounds for quantum key distribution with non-uniform phase
randomization
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Decoy-state quantum key distribution (QKD) is undoubtedly the most efficient solution to han-
dle multi-photon signals emitted by laser sources, and provides the same secret key rate scaling as
ideal single-photon sources. It requires, however, that the phase of each emitted pulse is uniformly
random. This might be difficult to guarantee in practice, due to inevitable device imperfections
and/or the use of an external phase modulator for phase randomization, which limits the possible
selected phases to a finite set. Here, we investigate the security of decoy-state QKD with arbitrary,
continuous or discrete, non-uniform phase randomization, and show that this technique is quite
robust to deviations from the ideal uniformly random scenario. For this, we combine a novel param-
eter estimation technique based on semi-definite programming, with the use of basis mismatched
events, to tightly estimate the parameters that determine the achievable secret key rate. In doing
so, we demonstrate that our analysis can significantly outperform previous results that address more
restricted scenarios.

[1]1Y. Zhao, B.Qi, H.-K. Lo, Applied Physics Letters 90 044106 (2007).
[2] P. Sibon et al., Nature Communications 8 13984 (2017).
[3] D. Bunandar et al., Physical Review X 8 021009 (2018). 10



Generated states in an active scheme

Ideally: The phase of each round is independently and uniformly random.
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In an ideal active scheme: The phase takes one of N possible values in [0, 27).
The states are not perfect PR-WCP.

/2
The security of this scenario has been analyzed!*!.

n 0 However, that work assumes evenly distributed phases,
but inevitable imperfections of the phase modulator
and electronic noise might invalidate this assumption.

3m/2

Example for N=4.

[4] Z. Cao, Z. Zhang, H.-K. Lo, and X. Ma, New Journal of Physics 17, 053014 (2015).



Cases of interest

Realistically: In an active phase randomization scheme, the phase distribution follows a certain PDF

£(9). . ~ A
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Where P(|¢)) = [4){¢ .

Our results are applicable for any PDF f(8). For simplicity we consider two cases:

Noisy discrete-phase randomization Partially known £(8)

/2 /2

3m/2 3m/2



Key ideas of the security proof

The previous security proof for passive randomization requires that f(6) satisfies f(8) = q > 0 for
all 8, where g is a known non-zero parameter.

In the case of active phase randomization, only a discrete number of phases is selected, and therefore
there might be many values of the phase such that f(@) = 0.

Despite this, we can adapt the previous parameter estimation technique to the active scenario.

We also employ certain inequalities based on the Bures distance to evaluate the key rate in the partially
known f(8) case.

By combining a parameter estimation technique based on SDP with basis mismatched events,
we significantly improve the performance for the ideal discretization case.



Results for ideal active phase randomization

For a standard channel model observed an
enhancement of approximately 10 to 20 dB in

performance when compared to previous works!4,

Just with N=8 the performance is close to the
ideal PR-WCP scenario.

The use of basis mismatched events yields a
more noticeable improvement when N is low.
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Results for realistic active phase randomization

For the noisy scenario we assume that each pulse follows a e
Gaussian distribution around the selected discrete value. 2 Mol
brad -=—= N=4, g, =0..
_g_ —— N=5. 0. =0.1
The performance increases with the standard deviation. g T NS =09
210
s
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Our analysis is applicable regardless of the exact PDF. ©
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21074
3
q') . . . . .
© Characterizing the PDF of an active configuration
il is a very relevant experimental task.
10-8

20 30 40 50 6 710
Alice-Bob loss (dB)



CC VIGO QUANTUM ! 4 C

UNIVERSITY
OF TOYAMA

THANK YOU FOR YOUR ATTENTION!

atlanTTic E AXENCIA REI Financiado por = pande
. . . GALEGA DE . * la Unién Europea LT e RISTER RN ecur;erauop‘,
UI’]IVCI‘Sldade\/IgO INNOVACION o NextGenerationEU il Y CIENCIA ;r;zziﬁ;:-ncaiglon




	Default Section
	Slide 1: Security of decoy-state QKD  with faulty phase randomization
	Slide 2: Introduction
	Slide 3: PNS attack and decoy-state method
	Slide 4: Imperfect phase randomization
	Slide 5: Passive phase randomization
	Slide 6: Assumptions of our proof
	Slide 7: Security proof (main idea)
	Slide 8: Reduction to uncorrelated scenario (sketch for l sub c equals 1)
	Slide 9: Reduction to uncorrelated scenario (l sub c equals 1)
	Slide 10: Results
	Slide 11: Active phase randomization
	Slide 12: Generated states in an active scheme
	Slide 13: Cases of interest
	Slide 14: Key ideas of the security proof
	Slide 15: Results for ideal active phase randomization
	Slide 16: Results for realistic active phase randomization
	Slide 17: THANK YOU FOR YOUR ATTENTION!


