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| ⟩“Please delete my data”

| ⟩D

• Assumption: Malicious server cannot recover D from the encoding in polynomial time
• Goal #1: After deletion, the server won’t be able to recover D even given        
• Goal #2: After deletion, the server won’t be able to recover D even given unbounded time
• Requirements: encryption + unclonability

[Broadbent, Islam 20]
[Hiroka, Morimae, Nishimaki, Yamakawa 21]

Classically: [Garg, Goldwasser, Vasudevan 20]
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Certified Deletion: Delegation
[Broadbent, Islam 20]

[Poremba 23]
[B, Garg, Goyal, Khurana, 

Malavolta, Raizes, Roberts 23]
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| ⟩
Before time 𝑇:

“Please delete my data”

Certified Deletion: Timed-Release Encryption
[Unruh 13]

[B, Khurana 23]
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• Modularize: think about the quantum information and crypto 
components separately

• Take advantage of the uncertainty principle 

• We need states that can simultaneously encode information in two 
conjugate bases
• One basis will encode plaintext information

• The other will encode valid deletion certificates
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𝑆 spanned by standard basis 
vectors (Wiesner/BB84 states):  
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so 𝑆⊥ = {0𝑛 , 𝑣}

H⊗𝑛( 𝑧 + −1 𝑥 𝑧 + 𝑣 ),
𝒞𝑠𝑘 𝑣 , 𝑏 ⊕ 𝑥

Only two valid deletion 
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OWF 𝑧 , OWF(𝑧 + 𝑣)

𝑆 uniform over all 
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𝑆𝑥,𝑧 , 𝒞𝑠𝑘 𝑆, ℎ , 𝑏 ⊕ ℎ(𝑥)

Secure even given oracle 
access to 𝑆 + 𝑥
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Security Game
CDExp𝒞,ℋ,𝒟,𝒜1,𝒜2

(𝑏)
• Sample 𝑆, 𝑥, 𝑧 ← 𝒟, ℎ ← ℋ, and 𝑠𝑘

• 𝒜1 𝑆𝑥,𝑧 , 𝒞𝑠𝑘 𝑆, ℎ , 𝑏 ⊕ ℎ 𝑥 → 𝜋, st

• If 𝜋 ∉ 𝑆⊥ + 𝑧, output 𝑏′ ← {0,1}
• Otherwise, output 𝑏′ ← 𝒜2 st, 𝑠𝑘



Security Game
CDExp𝒞,ℋ,𝒟,𝒜1,𝒜2

(𝑏)
• Sample 𝑆, 𝑥, 𝑧 ← 𝒟, ℎ ← ℋ, and 𝑠𝑘

• 𝒜1 𝑆𝑥,𝑧 , 𝒞𝑠𝑘 𝑆, ℎ , 𝑏 ⊕ ℎ 𝑥 → 𝜋, st

• If 𝜋 ∉ 𝑆⊥ + 𝑧, output 𝑏′ ← {0,1}
• Otherwise, output 𝑏′ ← 𝒜2 st, 𝑠𝑘

Want: ห

ห

Pr CDExp𝒞,ℋ,𝒟,𝒜1,𝒜2
0 = 1 −

Pr CDExp𝒞,ℋ,𝒟,𝒜1,𝒜2
1 = 1 = negl



Security Game
CDExp𝒞,ℋ,𝒟,𝒜1,𝒜2

(𝑏)
• Sample 𝑆, 𝑥, 𝑧 ← 𝒟, ℎ ← ℋ, and 𝑠𝑘

• 𝒜1 𝑆𝑥,𝑧 , 𝒞𝑠𝑘 𝑆, ℎ , 𝑏 ⊕ ℎ 𝑥 → 𝜋, st

• If 𝜋 ∉ 𝑆⊥ + 𝑧, output 𝑏′ ← {0,1}
• Otherwise, output 𝑏′ ← 𝒜2 st, 𝑠𝑘

Want: ห

ห

Pr CDExp𝒞,ℋ,𝒟,𝒜1,𝒜2
0 = 1 −

Pr CDExp𝒞,ℋ,𝒟,𝒜1,𝒜2
1 = 1 = negl

History



Security Game
CDExp𝒞,ℋ,𝒟,𝒜1,𝒜2

(𝑏)
• Sample 𝑆, 𝑥, 𝑧 ← 𝒟, ℎ ← ℋ, and 𝑠𝑘

• 𝒜1 𝑆𝑥,𝑧 , 𝒞𝑠𝑘 𝑆, ℎ , 𝑏 ⊕ ℎ 𝑥 → 𝜋, st

• If 𝜋 ∉ 𝑆⊥ + 𝑧, output 𝑏′ ← {0,1}
• Otherwise, output 𝑏′ ← 𝒜2 st, 𝑠𝑘

Want: ห

ห

Pr CDExp𝒞,ℋ,𝒟,𝒜1,𝒜2
0 = 1 −

Pr CDExp𝒞,ℋ,𝒟,𝒜1,𝒜2
1 = 1 = negl

• [Broadbent, Islam 20]:
• 𝒞 one-time pad
• ℋ good randomness extractor
• 𝒟 Wiesner states
• (𝒜1, 𝒜2) unbounded

History
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CDExp𝒞,ℋ,𝒟,𝒜1,𝒜2
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• Sample 𝑆, 𝑥, 𝑧 ← 𝒟, ℎ ← ℋ, and 𝑠𝑘

• 𝒜1 𝑆𝑥,𝑧 , 𝒞𝑠𝑘 𝑆, ℎ , 𝑏 ⊕ ℎ 𝑥 → 𝜋, st

• If 𝜋 ∉ 𝑆⊥ + 𝑧, output 𝑏′ ← {0,1}
• Otherwise, output 𝑏′ ← 𝒜2 st, 𝑠𝑘

Want: ห

ห

Pr CDExp𝒞,ℋ,𝒟,𝒜1,𝒜2
0 = 1 −

Pr CDExp𝒞,ℋ,𝒟,𝒜1,𝒜2
1 = 1 = negl

• [Broadbent, Islam 20]:
• 𝒞 one-time pad
• ℋ good randomness extractor
• 𝒟 Wiesner states
• (𝒜1, 𝒜2) unbounded

• [Hiroka, Morimae, Nishimaki, Yamakawa 21]:
• 𝒞 non-committing encryption scheme
• ℋ good randomness extractor
• 𝒟 Wiesner states
• 𝒜1, 𝒜2 computationally bounded

History



Security Game
CDExp𝒞,ℋ,𝒟,𝒜1,𝒜2

(𝑏)
• Sample 𝑆, 𝑥, 𝑧 ← 𝒟, ℎ ← ℋ, and 𝑠𝑘

• 𝒜1 𝑆𝑥,𝑧 , 𝒞𝑠𝑘 𝑆, ℎ , 𝑏 ⊕ ℎ 𝑥 → 𝜋, st

• If 𝜋 ∉ 𝑆⊥ + 𝑧, output 𝑏′ ← {0,1}
• Otherwise, output 𝑏′ ← 𝒜2 st, 𝑠𝑘

Want: ห

ห

Pr CDExp𝒞,ℋ,𝒟,𝒜1,𝒜2
0 = 1 −

Pr CDExp𝒞,ℋ,𝒟,𝒜1,𝒜2
1 = 1 = negl

• [Broadbent, Islam 20]:
• 𝒞 one-time pad
• ℋ good randomness extractor
• 𝒟 Wiesner states
• (𝒜1, 𝒜2) unbounded

• [Hiroka, Morimae, Nishimaki, Yamakawa 21]:
• 𝒞 non-committing encryption scheme
• ℋ good randomness extractor
• 𝒟 Wiesner states
• 𝒜1, 𝒜2 computationally bounded

• [B, Khurana 23]:
• 𝒞 semantically-secure distribution
• ℋ=⊕
• 𝒟 Wiesner states
• 𝒜1 computationally bounded, 𝒜2 unbounded

History



Security Game
CDExp𝒞,ℋ,𝒟,𝒜1,𝒜2

(𝑏)
• Sample 𝑆, 𝑥, 𝑧 ← 𝒟, ℎ ← ℋ, and 𝑠𝑘

• 𝒜1 𝑆𝑥,𝑧 , 𝒞𝑠𝑘 𝑆, ℎ , 𝑏 ⊕ ℎ 𝑥 → 𝜋, st

• If 𝜋 ∉ 𝑆⊥ + 𝑧, output 𝑏′ ← {0,1}
• Otherwise, output 𝑏′ ← 𝒜2 st, 𝑠𝑘

Want: ห

ห

Pr CDExp𝒞,ℋ,𝒟,𝒜1,𝒜2
0 = 1 −

Pr CDExp𝒞,ℋ,𝒟,𝒜1,𝒜2
1 = 1 = negl

• [Broadbent, Islam 20]:
• 𝒞 one-time pad
• ℋ good randomness extractor
• 𝒟 Wiesner states
• (𝒜1, 𝒜2) unbounded

• [Hiroka, Morimae, Nishimaki, Yamakawa 21]:
• 𝒞 non-committing encryption scheme
• ℋ good randomness extractor
• 𝒟 Wiesner states
• 𝒜1, 𝒜2 computationally bounded

• [B, Khurana 23]:
• 𝒞 semantically-secure distribution
• ℋ=⊕
• 𝒟 Wiesner states
• 𝒜1 computationally bounded, 𝒜2 unbounded

• [B, Garg, Goyal, Khurana, Malavolta, Raizes, Roberts 23]
• 𝒞 subspace-hiding distribution
• ℋ=⊕
• 𝒟 subspace states
• 𝒜1 computationally bounded, 𝒜2 unbounded

History



Security Game
CDExp𝒞,ℋ,𝒟,𝒜1,𝒜2

(𝑏)
• Sample 𝑆, 𝑥, 𝑧 ← 𝒟, ℎ ← ℋ, and 𝑠𝑘

• 𝒜1 𝑆𝑥,𝑧 , 𝒞𝑠𝑘 𝑆, ℎ , 𝑏 ⊕ ℎ 𝑥 → 𝜋, st

• If 𝜋 ∉ 𝑆⊥ + 𝑧, output 𝑏′ ← {0,1}
• Otherwise, output 𝑏′ ← 𝒜2 st, 𝑠𝑘

Want: ห

ห

Pr CDExp𝒞,ℋ,𝒟,𝒜1,𝒜2
0 = 1 −

Pr CDExp𝒞,ℋ,𝒟,𝒜1,𝒜2
1 = 1 = negl

• [Broadbent, Islam 20]:
• 𝒞 one-time pad
• ℋ good randomness extractor
• 𝒟 Wiesner states
• (𝒜1, 𝒜2) unbounded

• [Hiroka, Morimae, Nishimaki, Yamakawa 21]:
• 𝒞 non-committing encryption scheme
• ℋ good randomness extractor
• 𝒟 Wiesner states
• 𝒜1, 𝒜2 computationally bounded

• [B, Khurana 23]:
• 𝒞 semantically-secure distribution
• ℋ=⊕
• 𝒟 Wiesner states
• 𝒜1 computationally bounded, 𝒜2 unbounded

• [B, Garg, Goyal, Khurana, Malavolta, Raizes, Roberts 23]
• 𝒞 subspace-hiding distribution
• ℋ=⊕
• 𝒟 subspace states
• 𝒜1 computationally bounded, 𝒜2 unbounded

Note: [Unruh 13] showed similar statement for a 
slightly different template supporting quantum

certificates of deletion

History
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• Let 𝒞 be a computationally-hiding statistically-binding commitment
• Let ℋ =⊕ (unseeded)
• Let 𝒟 sample a uniformly random (𝑆, 𝑥, 𝑧)
• Let 𝒜1 be computationally bounded and 𝒜2 be unbounded

Example Proof



• Let 𝒞 be a computationally-hiding statistically-binding commitment
• Let ℋ =⊕ (unseeded)
• Let 𝒟 sample a uniformly random (𝑆, 𝑥, 𝑧)
• Let 𝒜1 be computationally bounded and 𝒜2 be unbounded

Hyb0 𝑏𝒜 𝐶ℎ
Sample 𝑆, 𝑥, 𝑧

Com 𝑆 , 𝑏 ⊕𝑖 𝑥𝑖 , |𝑆𝑥,𝑧⟩

𝜋, st

If 𝜋 ∉ 𝑆⊥ + 𝑧, output ⊥ ⊥
Otherwise, output st

Example Proof



• Let 𝒞 be a computationally-hiding statistically-binding commitment
• Let ℋ =⊕ (unseeded)
• Let 𝒟 sample a uniformly random (𝑆, 𝑥, 𝑧)
• Let 𝒜1 be computationally bounded and 𝒜2 be unbounded

Goal: Show that TD Hyb0 0 ,Hyb0 1 = negl

Hyb0 𝑏𝒜 𝐶ℎ
Sample 𝑆, 𝑥, 𝑧

Com 𝑆 , 𝑏 ⊕𝑖 𝑥𝑖 , |𝑆𝑥,𝑧⟩

𝜋, st

If 𝜋 ∉ 𝑆⊥ + 𝑧, output ⊥ ⊥
Otherwise, output st

Example Proof



Hybrid 1: Delay the dependence of the experiment on 𝑏

Example Proof

Hyb1 𝑏𝒜 𝐶ℎ

Com 𝑆 , 𝑏′, |𝑆𝑥,𝑧⟩

𝜋, st

Sample 𝑆, 𝑥, 𝑧
Sample 𝑏′ ← {0,1}

If 𝜋 ∉ 𝑆⊥ + 𝑧, output ⊥ ⊥
If 𝑏 ⊕𝑖 𝑥𝑖 ≠ 𝑏′, output ⊥ ⊥
Otherwise, output st



Hybrid 1: Delay the dependence of the experiment on 𝑏

TD Hyb1 0 ,Hyb1 1 =
1

2
TD Hyb0 0 ,Hyb0 1

Example Proof

Hyb1 𝑏𝒜 𝐶ℎ

Com 𝑆 , 𝑏′, |𝑆𝑥,𝑧⟩

𝜋, st

Sample 𝑆, 𝑥, 𝑧
Sample 𝑏′ ← {0,1}

If 𝜋 ∉ 𝑆⊥ + 𝑧, output ⊥ ⊥
If 𝑏 ⊕𝑖 𝑥𝑖 ≠ 𝑏′, output ⊥ ⊥
Otherwise, output st



Hybrid 1: Delay the dependence of the experiment on 𝑏

TD Hyb1 0 ,Hyb1 1 =
1

2
TD Hyb0 0 ,Hyb0 1

Example Proof

Remains to show that 𝑥
has a lot of conditional 

min-entropy

Hyb1 𝑏𝒜 𝐶ℎ

Com 𝑆 , 𝑏′, |𝑆𝑥,𝑧⟩

𝜋, st

Sample 𝑆, 𝑥, 𝑧
Sample 𝑏′ ← {0,1}

If 𝜋 ∉ 𝑆⊥ + 𝑧, output ⊥ ⊥
If 𝑏 ⊕𝑖 𝑥𝑖 ≠ 𝑏′, output ⊥ ⊥
Otherwise, output st



Example Proof Want to show: If 𝒜(|𝑆𝑥,𝑧⟩, Com(𝑆)) outputs 𝜋 ∈ 𝑆⊥ + 𝑧, 
then 𝑥 has a lot of conditional min-entropy



Example Proof Want to show: If 𝒜(|𝑆𝑥,𝑧⟩, Com(𝑆)) outputs 𝜋 ∈ 𝑆⊥ + 𝑧, 
then 𝑥 has a lot of conditional min-entropy

𝒜(|𝑆𝑥,𝑧⟩, Com(𝑆)) → 𝜋



Example Proof Want to show: If 𝒜(|𝑆𝑥,𝑧⟩, Com(𝑆)) outputs 𝜋 ∈ 𝑆⊥ + 𝑧, 
then 𝑥 has a lot of conditional min-entropy

𝒜(|𝑆𝑥,𝑧⟩, Com(𝑆)) → 𝜋

𝒜(|𝑆𝑥,𝑧⟩, Com(𝑆)) → 𝜋෍

𝑥∈co(𝑆)

|𝑥⟩

Purify



Example Proof Want to show: If 𝒜(|𝑆𝑥,𝑧⟩, Com(𝑆)) outputs 𝜋 ∈ 𝑆⊥ + 𝑧, 
then 𝑥 has a lot of conditional min-entropy

𝒜(|𝑆𝑥,𝑧⟩, Com(𝑆)) → 𝜋

𝒜(|𝑆𝑥,𝑧⟩, Com(𝑆)) → 𝜋෍

𝑥∈co(𝑆)

|𝑥⟩
U𝑆 𝑥 → ෍

𝑣∈𝑆⊥

−1 𝑣⋅𝑥|𝑣⟩

U𝑆
† 𝑣 → ෍

𝑥∈co(𝑆)

−1 𝑣⋅𝑥|𝑥⟩

For 𝑥 ∈ co 𝑆 :

For 𝑣 ∈ 𝑆⊥:

Purify



Example Proof Want to show: If 𝒜(|𝑆𝑥,𝑧⟩, Com(𝑆)) outputs 𝜋 ∈ 𝑆⊥ + 𝑧, 
then 𝑥 has a lot of conditional min-entropy

𝒜(|𝑆𝑥,𝑧⟩, Com(𝑆)) → 𝜋

𝒜(|𝑆𝑥,𝑧⟩, Com(𝑆)) → 𝜋෍

𝑥∈co(𝑆)

|𝑥⟩

𝒜(෍

𝑤

−1 𝑤⋅(𝑧+𝑣)|𝑤⟩ , Com(𝑆)) → 𝜋෍

𝑣∈𝑆⊥

|𝑣⟩

U𝑆 𝑥 → ෍

𝑣∈𝑆⊥

−1 𝑣⋅𝑥|𝑣⟩

U𝑆
† 𝑣 → ෍

𝑥∈co(𝑆)

−1 𝑣⋅𝑥|𝑥⟩U𝑆

For 𝑥 ∈ co 𝑆 :

For 𝑣 ∈ 𝑆⊥:

Purify



Example Proof
𝒜(|𝑆𝑥,𝑧⟩, Com(𝑆)) → 𝜋

𝒜(|𝑆𝑥,𝑧⟩, Com(𝑆)) → 𝜋෍

𝑥∈co(𝑆)

|𝑥⟩

𝒜(H⊗𝑛|𝑣 + 𝑧⟩, Com(𝑆)) → 𝜋෍

𝑣∈𝑆⊥

|𝑣⟩

U𝑆 𝑥 → ෍

𝑣∈𝑆⊥

−1 𝑣⋅𝑥|𝑣⟩

U𝑆
† 𝑣 → ෍

𝑥∈co(𝑆)

−1 𝑣⋅𝑥|𝑥⟩U𝑆

Purify
For 𝑥 ∈ co 𝑆 :

For 𝑣 ∈ 𝑆⊥:

Want to show: If 𝒜(|𝑆𝑥,𝑧⟩, Com(𝑆)) outputs 𝜋 ∈ 𝑆⊥ + 𝑧, 
then 𝑥 has a lot of conditional min-entropy



Example Proof
𝒜(|𝑆𝑥,𝑧⟩, Com(𝑆)) → 𝜋

𝒜(|𝑆𝑥,𝑧⟩, Com(𝑆)) → 𝜋෍

𝑥∈co(𝑆)

|𝑥⟩

𝒜(H⊗𝑛|𝑣 + 𝑧⟩, Com(𝑆)) → 𝜋෍

𝑣∈𝑆⊥

|𝑣⟩

U𝑆 𝑥 → ෍

𝑣∈𝑆⊥

−1 𝑣⋅𝑥|𝑣⟩

U𝑆
† 𝑣 → ෍

𝑥∈co(𝑆)

−1 𝑣⋅𝑥|𝑥⟩U𝑆

Purify
For 𝑥 ∈ co 𝑆 :

For 𝑣 ∈ 𝑆⊥:

Claim: if 𝒜 given random 𝑣 + 𝑧 and outputs 𝜋 ∈ 𝑆⊥ + 𝑧, 
then 𝜋 = 𝑣 + 𝑧 with overwhelming probability (over 𝑆, 𝑧)

Want to show: If 𝒜(|𝑆𝑥,𝑧⟩, Com(𝑆)) outputs 𝜋 ∈ 𝑆⊥ + 𝑧, 
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• (Indistinguishability) obfuscation with certified deletion

• Applications

• Comparison with other notions 

copy-detection
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[BGGKMRR23]
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Candidate construction:

P should only accept authentic vectors 𝑣 derived from the state 𝑆𝑥,𝑧
Define authentic vectors via a random superspace 𝑇 + 𝑢 ⊃ 𝑆 + 𝑥
Hard for the adversary to query on any authentic vector not in 𝑆 + 𝑥

Solution:

If CObf is modeled as a classical oracle:
• Before deletion, evaluator can use the oracle to learn 𝑓(𝑦) for any 𝑦 of their choice
• After deletion (outputting 𝑣 ∈ 𝑆⊥ + 𝑧), the evaluator cannot learn anything else from 

the oracle even given unbounded queries

[BGGKMRR23]
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• Let 𝑓 = ሚ𝑓 ⊕ 𝑥
• Output 𝑓(𝑦)
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Indistinguishability obfuscation with certified deletion
• For any two functionally equivalent circuits C0, C1, Obf C0 ≈𝑐 Obf(C1), and after 

deletion Obf C0 ≈𝑠 Obf(C1)

Satisfied by a slightly modified construction

Seems like a weak guarantee, but (differing inputs) iO with CD are useful tools:
• Two-message delegation with certified deletion
• A generic compiler from encryption to encryption with revocable secret keys
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Encryption with Revocable / Deletable Secret Keys

• Gen → pk, vk, |sk⟩
• Enc pk,𝑚 → ct
• Dec |sk⟩, ct → 𝑚
• Del(|sk⟩) → cert
• Ver vk, cert → ⊤/⊥

Deletion security: ciphertexts
generated after successful deletion 
of |sk⟩ are semantically secure

Simple compiler: sk = iOCD(Dec(sk,⋅)) [BGGMKRR23]

Gives publicly-verifiable revocation if iOCD is publicly verifiable

Privately-verifiable revocation from standard assumptions: 
[Kitagawa, Nishimaki 22], [Agarwal, Kitagawa, Nishimaki, Yamada, 
Yamakawa 23], [Ananth, Poremba, Vaikuntanathan 23]
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Related Notions Hard for the adversary to produce…

“working” copy 
of a program publicly verifiable privately verifiablecertificate derived 

from program

Copy Protection:
[Aaronson 09]

Publicly-Verifiable Deletion / Revocation:
[BGGKMRR23]

Privately-Verifiable Deletion / Revocation:
[KN22], [AKNYY23], [APV23]

Copy Detection / Infinite-Term Secure Software Leasing:
[Ananth, La Placa 21], [Aaronson, Liu, Liu, Zhandry, Zhang 22]

Finite-Term Secure Software Leasing:
[AL21]
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Future Directions

• Prove the security of CDExp𝒞,ℋ,𝒟,𝒜1,𝒜2
when

• Encoding super-logarithmic bits per subspace state
• 𝒞 is any semantically-secure distribution and ℋ is a good seeded randomness 

extractor

• Robustness to noise (beyond one-time pad [BI20])

• Publicly-verifiable revocation/deletion without post-quantum iO

• More rigorous understanding of the relationship between unclonable primitives from 
previous slide ([Ananth, Kaleoglu, Liu 23])
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