
Tutorial Talk: Certified
Deletion

James Bartusek
UC Berkeley

Outline

1. Basic scenario and applications

2. Recipe for constructions

3. Security

4. Certifiable deletion of programs

Outline

1. Basic scenario and applications

2. Recipe for constructions

3. Security

4. Certifiable deletion of programs

D

Certified Deletion: Cloud Storage

| ⟩D

D| ⟩

Certified Deletion: Cloud Storage

| ⟩D

• Assumption: Malicious server cannot recover D from the encoding in polynomial time

D| ⟩

Certified Deletion: Cloud Storage

“Please delete my data”

| ⟩D

• Assumption: Malicious server cannot recover D from the encoding in polynomial time

D| ⟩

Certified Deletion: Cloud Storage

| ⟩“Please delete my data”

| ⟩D

• Assumption: Malicious server cannot recover D from the encoding in polynomial time

Certified Deletion: Cloud Storage

Certified Deletion: Cloud Storage

| ⟩“Please delete my data”

| ⟩D

• Assumption: Malicious server cannot recover D from the encoding in polynomial time
• Goal #1: After deletion, the server won’t be able to recover D even given

Certified Deletion: Cloud Storage

| ⟩“Please delete my data”

| ⟩D

• Assumption: Malicious server cannot recover D from the encoding in polynomial time
• Goal #1: After deletion, the server won’t be able to recover D even given
• Goal #2: After deletion, the server won’t be able to recover D even given unbounded time

Certified Deletion: Cloud Storage

| ⟩“Please delete my data”

| ⟩D

• Assumption: Malicious server cannot recover D from the encoding in polynomial time
• Goal #1: After deletion, the server won’t be able to recover D even given
• Goal #2: After deletion, the server won’t be able to recover D even given unbounded time
• Requirements: encryption + unclonability

Certified Deletion: Cloud Storage

| ⟩“Please delete my data”

| ⟩D

• Assumption: Malicious server cannot recover D from the encoding in polynomial time
• Goal #1: After deletion, the server won’t be able to recover D even given
• Goal #2: After deletion, the server won’t be able to recover D even given unbounded time
• Requirements: encryption + unclonability

[Broadbent, Islam 20]
[Hiroka, Morimae, Nishimaki, Yamakawa 21]

Certified Deletion: Cloud Storage

| ⟩“Please delete my data”

| ⟩D

• Assumption: Malicious server cannot recover D from the encoding in polynomial time
• Goal #1: After deletion, the server won’t be able to recover D even given
• Goal #2: After deletion, the server won’t be able to recover D even given unbounded time
• Requirements: encryption + unclonability

[Broadbent, Islam 20]
[Hiroka, Morimae, Nishimaki, Yamakawa 21]

Classically: [Garg, Goldwasser, Vasudevan 20]

D| ⟩
| ⟩D𝑓,

𝑓,

Certified Deletion: Delegation

D| ⟩
| ⟩D𝑓,

𝑓(D)

𝑓,

Certified Deletion: Delegation

| ⟩
| ⟩D𝑓,

𝑓(D),
𝑓(D)

𝑓,

Certified Deletion: Delegation

| ⟩
| ⟩D𝑓,

𝑓(D),

• Server can compute and return 𝑓(D) along with a proof that they
erased all other information about D

𝑓(D)

𝑓,

Certified Deletion: Delegation

| ⟩
| ⟩D𝑓,

𝑓(D),

• Server can compute and return 𝑓(D) along with a proof that they
erased all other information about D

𝑓(D)

𝑓,

Certified Deletion: Delegation
[Broadbent, Islam 20]

[Poremba 23]
[B, Garg, Goyal, Khurana,

Malavolta, Raizes, Roberts 23]

| ⟩D

Certified Deletion: Timed-Release Encryption

| ⟩D

After time 𝑇: | ⟩D D

Certified Deletion: Timed-Release Encryption

| ⟩
Before time 𝑇:

“Please delete my data”

D

Certified Deletion: Timed-Release Encryption

| ⟩
Before time 𝑇:

“Please delete my data”

Certified Deletion: Timed-Release Encryption

• Wills

| ⟩
Before time 𝑇:

“Please delete my data”

Certified Deletion: Timed-Release Encryption

• Wills

• Deposits

| ⟩
Before time 𝑇:

“Please delete my data”

Certified Deletion: Timed-Release Encryption

• Wills

• Deposits

| ⟩
Before time 𝑇:

“Please delete my data”

Certified Deletion: Timed-Release Encryption
[Unruh 13]

[B, Khurana 23]

Outline

1. Basic scenario and applications

2. Recipe for constructions

3. Security

4. Certifiable deletion of programs

Approach

Approach

• Modularize: think about the quantum information and crypto
components separately

Approach

• Modularize: think about the quantum information and crypto
components separately

• Take advantage of the uncertainty principle

Approach

• Modularize: think about the quantum information and crypto
components separately

• Take advantage of the uncertainty principle

• We need states that can simultaneously encode information in two
conjugate bases

Approach

• Modularize: think about the quantum information and crypto
components separately

• Take advantage of the uncertainty principle

• We need states that can simultaneously encode information in two
conjugate bases
• One basis will encode plaintext information

Approach

• Modularize: think about the quantum information and crypto
components separately

• Take advantage of the uncertainty principle

• We need states that can simultaneously encode information in two
conjugate bases
• One basis will encode plaintext information

• The other will encode valid deletion certificates

General Recipe

For a subspace 𝑆 ⊂ 𝔽2
𝑛 and vectors 𝑥 ∈ co 𝑆 , 𝑧 ∈ co(𝑆⊥), define

𝑆𝑥,𝑧 =
1

|𝑆|
෍

𝑠∈𝑆

−1 𝑠⋅𝑧|𝑠 + 𝑥⟩

General Recipe

For a subspace 𝑆 ⊂ 𝔽2
𝑛 and vectors 𝑥 ∈ co 𝑆 , 𝑧 ∈ co(𝑆⊥), define

𝑆𝑥,𝑧 =
1

|𝑆|
෍

𝑠∈𝑆

−1 𝑠⋅𝑧|𝑠 + 𝑥⟩

co(𝑆): a set of coset
representatives of 𝑆General Recipe

For a subspace 𝑆 ⊂ 𝔽2
𝑛 and vectors 𝑥 ∈ co 𝑆 , 𝑧 ∈ co(𝑆⊥), define

𝑆𝑥,𝑧 =
1

|𝑆|
෍

𝑠∈𝑆

−1 𝑠⋅𝑧|𝑠 + 𝑥⟩

H⊗𝑛

𝑆𝑧,𝑥
⊥ =

1

|𝑆⊥|
෍

𝑠∈𝑆⊥

−1 𝑠⋅𝑥|𝑠 + 𝑧⟩

co(𝑆): a set of coset
representatives of 𝑆General Recipe

For a subspace 𝑆 ⊂ 𝔽2
𝑛 and vectors 𝑥 ∈ co 𝑆 , 𝑧 ∈ co(𝑆⊥), define

𝑆𝑥,𝑧 =
1

|𝑆|
෍

𝑠∈𝑆

−1 𝑠⋅𝑧|𝑠 + 𝑥⟩

H⊗𝑛

𝑆𝑧,𝑥
⊥ =

1

|𝑆⊥|
෍

𝑠∈𝑆⊥

−1 𝑠⋅𝑥|𝑠 + 𝑧⟩

co(𝑆): a set of coset
representatives of 𝑆

Uncertainty principle: 𝒜(|𝑆𝑥,𝑧⟩) ⇏ (𝑠 ∈ 𝑆 + 𝑥 , 𝑠′ ∈ 𝑆⊥ + 𝑧)

General Recipe

(if 𝑆, 𝑥, 𝑧 are sufficiently random)

For a subspace 𝑆 ⊂ 𝔽2
𝑛 and vectors 𝑥 ∈ co 𝑆 , 𝑧 ∈ co(𝑆⊥), define

𝑆𝑥,𝑧 =
1

|𝑆|
෍

𝑠∈𝑆

−1 𝑠⋅𝑧|𝑠 + 𝑥⟩

H⊗𝑛

𝑆𝑧,𝑥
⊥ =

1

|𝑆⊥|
෍

𝑠∈𝑆⊥

−1 𝑠⋅𝑥|𝑠 + 𝑧⟩

co(𝑆): a set of coset
representatives of 𝑆

Uncertainty principle: 𝒜(|𝑆𝑥,𝑧⟩) ⇏ (𝑠 ∈ 𝑆 + 𝑥 , 𝑠′ ∈ 𝑆⊥ + 𝑧)

Use 𝑥 to hide the plaintext

Use 𝑧 as certificate of deletion

General Recipe

(if 𝑆, 𝑥, 𝑧 are sufficiently random)

General Recipe

Notation
• 𝒞: cryptosystem with decryption key 𝑠𝑘
• ℋ: family of hash functions
• 𝒟: a distribution over (𝑆, 𝑥, 𝑧)

General Recipe

Notation
• 𝒞: cryptosystem with decryption key 𝑠𝑘
• ℋ: family of hash functions
• 𝒟: a distribution over (𝑆, 𝑥, 𝑧)

EncCD 𝑏 :
• Sample 𝑆, 𝑥, 𝑧 ← 𝒟
• Sample ℎ ← ℋ

• Output 𝑆𝑥,𝑧 , 𝒞𝑠𝑘 𝑆, ℎ , 𝑏 ⊕ ℎ(𝑥)

General Recipe

Notation
• 𝒞: cryptosystem with decryption key 𝑠𝑘
• ℋ: family of hash functions
• 𝒟: a distribution over (𝑆, 𝑥, 𝑧)

EncCD 𝑏 :
• Sample 𝑆, 𝑥, 𝑧 ← 𝒟
• Sample ℎ ← ℋ

• Output 𝑆𝑥,𝑧 , 𝒞𝑠𝑘 𝑆, ℎ , 𝑏 ⊕ ℎ(𝑥)

Decryption given 𝑠𝑘:
• Use 𝑠𝑘 to learn 𝑆 and ℎ

• Measure 𝑆𝑥,𝑧 in standard basis, and
let 𝑥 be the coset representative of
the resulting vector

• Use ℎ(𝑥) to learn the plaintext 𝑏

General Recipe

Notation
• 𝒞: cryptosystem with decryption key 𝑠𝑘
• ℋ: family of hash functions
• 𝒟: a distribution over (𝑆, 𝑥, 𝑧)

EncCD 𝑏 :
• Sample 𝑆, 𝑥, 𝑧 ← 𝒟
• Sample ℎ ← ℋ

• Output 𝑆𝑥,𝑧 , 𝒞𝑠𝑘 𝑆, ℎ , 𝑏 ⊕ ℎ(𝑥)

Decryption given 𝑠𝑘:
• Use 𝑠𝑘 to learn 𝑆 and ℎ

• Measure 𝑆𝑥,𝑧 in standard basis, and
let 𝑥 be the coset representative of
the resulting vector

• Use ℎ(𝑥) to learn the plaintext 𝑏

General Recipe

Deletion:

• Measure 𝑆𝑥,𝑧 in Hadamard basis to

obtain a vector 𝜋
• Verification checks that 𝜋 ∈ 𝑆⊥ + 𝑧

Notation
• 𝒞: cryptosystem with decryption key 𝑠𝑘
• ℋ: family of hash functions
• 𝒟: a distribution over (𝑆, 𝑥, 𝑧)

EncCD 𝑏 :
• Sample 𝑆, 𝑥, 𝑧 ← 𝒟
• Sample ℎ ← ℋ

• Output 𝑆𝑥,𝑧 , 𝒞𝑠𝑘 𝑆, ℎ , 𝑏 ⊕ ℎ(𝑥)

Decryption given 𝑠𝑘:
• Use 𝑠𝑘 to learn 𝑆 and ℎ

• Measure 𝑆𝑥,𝑧 in standard basis, and
let 𝑥 be the coset representative of
the resulting vector

• Use ℎ(𝑥) to learn the plaintext 𝑏

General Recipe

Deletion:

• Measure 𝑆𝑥,𝑧 in Hadamard basis to

obtain a vector 𝜋
• Verification checks that 𝜋 ∈ 𝑆⊥ + 𝑧

One-time pad
Public-key encryption
Commitment
Timed-release encryption
…

Notation
• 𝒞: cryptosystem with decryption key 𝑠𝑘
• ℋ: family of hash functions
• 𝒟: a distribution over (𝑆, 𝑥, 𝑧)

EncCD 𝑏 :
• Sample 𝑆, 𝑥, 𝑧 ← 𝒟
• Sample ℎ ← ℋ

• Output 𝑆𝑥,𝑧 , 𝒞𝑠𝑘 𝑆, ℎ , 𝑏 ⊕ ℎ(𝑥)

Decryption given 𝑠𝑘:
• Use 𝑠𝑘 to learn 𝑆 and ℎ

• Measure 𝑆𝑥,𝑧 in standard basis, and
let 𝑥 be the coset representative of
the resulting vector

• Use ℎ(𝑥) to learn the plaintext 𝑏

General Recipe

Deletion:

• Measure 𝑆𝑥,𝑧 in Hadamard basis to

obtain a vector 𝜋
• Verification checks that 𝜋 ∈ 𝑆⊥ + 𝑧

One-time pad
Public-key encryption
Commitment
Timed-release encryption
…

Randomness
extractor
with seed ℎ

Notation
• 𝒞: cryptosystem with decryption key 𝑠𝑘
• ℋ: family of hash functions
• 𝒟: a distribution over (𝑆, 𝑥, 𝑧)

EncCD 𝑏 :
• Sample 𝑆, 𝑥, 𝑧 ← 𝒟
• Sample ℎ ← ℋ

• Output 𝑆𝑥,𝑧 , 𝒞𝑠𝑘 𝑆, ℎ , 𝑏 ⊕ ℎ(𝑥)

Decryption given 𝑠𝑘:
• Use 𝑠𝑘 to learn 𝑆 and ℎ

• Measure 𝑆𝑥,𝑧 in standard basis, and
let 𝑥 be the coset representative of
the resulting vector

• Use ℎ(𝑥) to learn the plaintext 𝑏

General Recipe

Deletion:

• Measure 𝑆𝑥,𝑧 in Hadamard basis to

obtain a vector 𝜋
• Verification checks that 𝜋 ∈ 𝑆⊥ + 𝑧

One-time pad
Public-key encryption
Commitment
Timed-release encryption
…

Randomness
extractor
with seed ℎ

Instantiatiating the distribution over 𝑆

Optimize for…

Instantiatiating the distribution over 𝑆

Optimize for…

Practicality

Instantiatiating the distribution over 𝑆

Optimize for…

Practicality

𝑆 spanned by standard basis
vectors (Wiesner/BB84 states):
𝜃 ← {0,1}𝑛, 𝑆 = span{𝑒𝑖}𝑖:𝜃𝑖=1

Instantiatiating the distribution over 𝑆

Optimize for…

Practicality

𝑆 spanned by standard basis
vectors (Wiesner/BB84 states):
𝜃 ← {0,1}𝑛, 𝑆 = span{𝑒𝑖}𝑖:𝜃𝑖=1

H𝜃1 𝑥1 , … , H𝜃𝑛 𝑥𝑛 ,
𝒞𝑠𝑘 𝜃, ℎ , 𝑏 ⊕ ℎ({𝑥𝑖}𝑖:𝜃𝑖=0)

Instantiatiating the distribution over 𝑆

Optimize for…

Practicality

𝑆 spanned by standard basis
vectors (Wiesner/BB84 states):
𝜃 ← {0,1}𝑛, 𝑆 = span{𝑒𝑖}𝑖:𝜃𝑖=1

H𝜃1 𝑥1 , … , H𝜃𝑛 𝑥𝑛 ,
𝒞𝑠𝑘 𝜃, ℎ , 𝑏 ⊕ ℎ({𝑥𝑖}𝑖:𝜃𝑖=0)

No entanglement required

Instantiatiating the distribution over 𝑆

Optimize for…

Practicality

𝑆 spanned by standard basis
vectors (Wiesner/BB84 states):
𝜃 ← {0,1}𝑛, 𝑆 = span{𝑒𝑖}𝑖:𝜃𝑖=1

H𝜃1 𝑥1 , … , H𝜃𝑛 𝑥𝑛 ,
𝒞𝑠𝑘 𝜃, ℎ , 𝑏 ⊕ ℎ({𝑥𝑖}𝑖:𝜃𝑖=0)

No entanglement required

[BI20]

Instantiatiating the distribution over 𝑆

Optimize for…

Practicality Publicly-Verifiable Deletion

𝑆 spanned by standard basis
vectors (Wiesner/BB84 states):
𝜃 ← {0,1}𝑛, 𝑆 = span{𝑒𝑖}𝑖:𝜃𝑖=1

H𝜃1 𝑥1 , … , H𝜃𝑛 𝑥𝑛 ,
𝒞𝑠𝑘 𝜃, ℎ , 𝑏 ⊕ ℎ({𝑥𝑖}𝑖:𝜃𝑖=0)

No entanglement required

[BI20]

Instantiatiating the distribution over 𝑆

Optimize for…

Practicality Publicly-Verifiable Deletion

𝑆 spanned by standard basis
vectors (Wiesner/BB84 states):
𝜃 ← {0,1}𝑛, 𝑆 = span{𝑒𝑖}𝑖:𝜃𝑖=1

H𝜃1 𝑥1 , … , H𝜃𝑛 𝑥𝑛 ,
𝒞𝑠𝑘 𝜃, ℎ , 𝑏 ⊕ ℎ({𝑥𝑖}𝑖:𝜃𝑖=0)

No entanglement required

𝑆 has dimension 𝑛 − 1,
so 𝑆⊥ = {0𝑛 , 𝑣}

[BI20]

Instantiatiating the distribution over 𝑆

Optimize for…

Practicality Publicly-Verifiable Deletion

𝑆 spanned by standard basis
vectors (Wiesner/BB84 states):
𝜃 ← {0,1}𝑛, 𝑆 = span{𝑒𝑖}𝑖:𝜃𝑖=1

H𝜃1 𝑥1 , … , H𝜃𝑛 𝑥𝑛 ,
𝒞𝑠𝑘 𝜃, ℎ , 𝑏 ⊕ ℎ({𝑥𝑖}𝑖:𝜃𝑖=0)

No entanglement required

𝑆 has dimension 𝑛 − 1,
so 𝑆⊥ = {0𝑛 , 𝑣}

H⊗𝑛(𝑧 + −1 𝑥 𝑧 + 𝑣),
𝒞𝑠𝑘 𝑣 , 𝑏 ⊕ 𝑥

[BI20]

Instantiatiating the distribution over 𝑆

Optimize for…

Practicality Publicly-Verifiable Deletion

𝑆 spanned by standard basis
vectors (Wiesner/BB84 states):
𝜃 ← {0,1}𝑛, 𝑆 = span{𝑒𝑖}𝑖:𝜃𝑖=1

H𝜃1 𝑥1 , … , H𝜃𝑛 𝑥𝑛 ,
𝒞𝑠𝑘 𝜃, ℎ , 𝑏 ⊕ ℎ({𝑥𝑖}𝑖:𝜃𝑖=0)

No entanglement required

𝑆 has dimension 𝑛 − 1,
so 𝑆⊥ = {0𝑛 , 𝑣}

H⊗𝑛(𝑧 + −1 𝑥 𝑧 + 𝑣),
𝒞𝑠𝑘 𝑣 , 𝑏 ⊕ 𝑥

Only two valid deletion
certificates, so publish
OWF 𝑧 , OWF(𝑧 + 𝑣)

[BI20]

Instantiatiating the distribution over 𝑆

Optimize for…

Practicality Publicly-Verifiable Deletion

𝑆 spanned by standard basis
vectors (Wiesner/BB84 states):
𝜃 ← {0,1}𝑛, 𝑆 = span{𝑒𝑖}𝑖:𝜃𝑖=1

H𝜃1 𝑥1 , … , H𝜃𝑛 𝑥𝑛 ,
𝒞𝑠𝑘 𝜃, ℎ , 𝑏 ⊕ ℎ({𝑥𝑖}𝑖:𝜃𝑖=0)

No entanglement required

𝑆 has dimension 𝑛 − 1,
so 𝑆⊥ = {0𝑛 , 𝑣}

H⊗𝑛(𝑧 + −1 𝑥 𝑧 + 𝑣),
𝒞𝑠𝑘 𝑣 , 𝑏 ⊕ 𝑥

Only two valid deletion
certificates, so publish
OWF 𝑧 , OWF(𝑧 + 𝑣)

[BI20] [BKMPW23]

Instantiatiating the distribution over 𝑆

Optimize for…

Practicality Publicly-Verifiable CiphertextPublicly-Verifiable Deletion

𝑆 spanned by standard basis
vectors (Wiesner/BB84 states):
𝜃 ← {0,1}𝑛, 𝑆 = span{𝑒𝑖}𝑖:𝜃𝑖=1

H𝜃1 𝑥1 , … , H𝜃𝑛 𝑥𝑛 ,
𝒞𝑠𝑘 𝜃, ℎ , 𝑏 ⊕ ℎ({𝑥𝑖}𝑖:𝜃𝑖=0)

No entanglement required

𝑆 has dimension 𝑛 − 1,
so 𝑆⊥ = {0𝑛 , 𝑣}

H⊗𝑛(𝑧 + −1 𝑥 𝑧 + 𝑣),
𝒞𝑠𝑘 𝑣 , 𝑏 ⊕ 𝑥

Only two valid deletion
certificates, so publish
OWF 𝑧 , OWF(𝑧 + 𝑣)

[BI20] [BKMPW23]

Instantiatiating the distribution over 𝑆

Optimize for…

Practicality Publicly-Verifiable CiphertextPublicly-Verifiable Deletion

𝑆 spanned by standard basis
vectors (Wiesner/BB84 states):
𝜃 ← {0,1}𝑛, 𝑆 = span{𝑒𝑖}𝑖:𝜃𝑖=1

H𝜃1 𝑥1 , … , H𝜃𝑛 𝑥𝑛 ,
𝒞𝑠𝑘 𝜃, ℎ , 𝑏 ⊕ ℎ({𝑥𝑖}𝑖:𝜃𝑖=0)

No entanglement required

𝑆 has dimension 𝑛 − 1,
so 𝑆⊥ = {0𝑛 , 𝑣}

H⊗𝑛(𝑧 + −1 𝑥 𝑧 + 𝑣),
𝒞𝑠𝑘 𝑣 , 𝑏 ⊕ 𝑥

Only two valid deletion
certificates, so publish
OWF 𝑧 , OWF(𝑧 + 𝑣)

𝑆 uniform over all
subspaces

[BI20] [BKMPW23]

Instantiatiating the distribution over 𝑆

Optimize for…

Practicality Publicly-Verifiable CiphertextPublicly-Verifiable Deletion

𝑆 spanned by standard basis
vectors (Wiesner/BB84 states):
𝜃 ← {0,1}𝑛, 𝑆 = span{𝑒𝑖}𝑖:𝜃𝑖=1

H𝜃1 𝑥1 , … , H𝜃𝑛 𝑥𝑛 ,
𝒞𝑠𝑘 𝜃, ℎ , 𝑏 ⊕ ℎ({𝑥𝑖}𝑖:𝜃𝑖=0)

No entanglement required

𝑆 has dimension 𝑛 − 1,
so 𝑆⊥ = {0𝑛 , 𝑣}

H⊗𝑛(𝑧 + −1 𝑥 𝑧 + 𝑣),
𝒞𝑠𝑘 𝑣 , 𝑏 ⊕ 𝑥

Only two valid deletion
certificates, so publish
OWF 𝑧 , OWF(𝑧 + 𝑣)

𝑆 uniform over all
subspaces

𝑆𝑥,𝑧 , 𝒞𝑠𝑘 𝑆, ℎ , 𝑏 ⊕ ℎ(𝑥)

[BI20] [BKMPW23]

Instantiatiating the distribution over 𝑆

Optimize for…

Practicality Publicly-Verifiable CiphertextPublicly-Verifiable Deletion

𝑆 spanned by standard basis
vectors (Wiesner/BB84 states):
𝜃 ← {0,1}𝑛, 𝑆 = span{𝑒𝑖}𝑖:𝜃𝑖=1

H𝜃1 𝑥1 , … , H𝜃𝑛 𝑥𝑛 ,
𝒞𝑠𝑘 𝜃, ℎ , 𝑏 ⊕ ℎ({𝑥𝑖}𝑖:𝜃𝑖=0)

No entanglement required

𝑆 has dimension 𝑛 − 1,
so 𝑆⊥ = {0𝑛 , 𝑣}

H⊗𝑛(𝑧 + −1 𝑥 𝑧 + 𝑣),
𝒞𝑠𝑘 𝑣 , 𝑏 ⊕ 𝑥

Only two valid deletion
certificates, so publish
OWF 𝑧 , OWF(𝑧 + 𝑣)

𝑆 uniform over all
subspaces

𝑆𝑥,𝑧 , 𝒞𝑠𝑘 𝑆, ℎ , 𝑏 ⊕ ℎ(𝑥)

Secure even given oracle
access to 𝑆 + 𝑥

[BI20] [BKMPW23]

Instantiatiating the distribution over 𝑆

Optimize for…

Practicality Publicly-Verifiable CiphertextPublicly-Verifiable Deletion

𝑆 spanned by standard basis
vectors (Wiesner/BB84 states):
𝜃 ← {0,1}𝑛, 𝑆 = span{𝑒𝑖}𝑖:𝜃𝑖=1

H𝜃1 𝑥1 , … , H𝜃𝑛 𝑥𝑛 ,
𝒞𝑠𝑘 𝜃, ℎ , 𝑏 ⊕ ℎ({𝑥𝑖}𝑖:𝜃𝑖=0)

No entanglement required

𝑆 has dimension 𝑛 − 1,
so 𝑆⊥ = {0𝑛 , 𝑣}

H⊗𝑛(𝑧 + −1 𝑥 𝑧 + 𝑣),
𝒞𝑠𝑘 𝑣 , 𝑏 ⊕ 𝑥

Only two valid deletion
certificates, so publish
OWF 𝑧 , OWF(𝑧 + 𝑣)

𝑆 uniform over all
subspaces

𝑆𝑥,𝑧 , 𝒞𝑠𝑘 𝑆, ℎ , 𝑏 ⊕ ℎ(𝑥)

Secure even given oracle
access to 𝑆 + 𝑥

[BI20] [BKMPW23] [BGGKMRR23]

Outline

1. Basic scenario and applications

2. Recipe for constructions

3. Security

4. Certifiable deletion of programs

Security Game

Security Game
CDExp𝒞,ℋ,𝒟,𝒜1,𝒜2

(𝑏)
• Sample 𝑆, 𝑥, 𝑧 ← 𝒟, ℎ ← ℋ, and 𝑠𝑘

• 𝒜1 𝑆𝑥,𝑧 , 𝒞𝑠𝑘 𝑆, ℎ , 𝑏 ⊕ ℎ 𝑥 → 𝜋, st

• If 𝜋 ∉ 𝑆⊥ + 𝑧, output 𝑏′ ← {0,1}
• Otherwise, output 𝑏′ ← 𝒜2 st, 𝑠𝑘

Security Game
CDExp𝒞,ℋ,𝒟,𝒜1,𝒜2

(𝑏)
• Sample 𝑆, 𝑥, 𝑧 ← 𝒟, ℎ ← ℋ, and 𝑠𝑘

• 𝒜1 𝑆𝑥,𝑧 , 𝒞𝑠𝑘 𝑆, ℎ , 𝑏 ⊕ ℎ 𝑥 → 𝜋, st

• If 𝜋 ∉ 𝑆⊥ + 𝑧, output 𝑏′ ← {0,1}
• Otherwise, output 𝑏′ ← 𝒜2 st, 𝑠𝑘

Want: ห

ห

Pr CDExp𝒞,ℋ,𝒟,𝒜1,𝒜2
0 = 1 −

Pr CDExp𝒞,ℋ,𝒟,𝒜1,𝒜2
1 = 1 = negl

Security Game
CDExp𝒞,ℋ,𝒟,𝒜1,𝒜2

(𝑏)
• Sample 𝑆, 𝑥, 𝑧 ← 𝒟, ℎ ← ℋ, and 𝑠𝑘

• 𝒜1 𝑆𝑥,𝑧 , 𝒞𝑠𝑘 𝑆, ℎ , 𝑏 ⊕ ℎ 𝑥 → 𝜋, st

• If 𝜋 ∉ 𝑆⊥ + 𝑧, output 𝑏′ ← {0,1}
• Otherwise, output 𝑏′ ← 𝒜2 st, 𝑠𝑘

Want: ห

ห

Pr CDExp𝒞,ℋ,𝒟,𝒜1,𝒜2
0 = 1 −

Pr CDExp𝒞,ℋ,𝒟,𝒜1,𝒜2
1 = 1 = negl

History

Security Game
CDExp𝒞,ℋ,𝒟,𝒜1,𝒜2

(𝑏)
• Sample 𝑆, 𝑥, 𝑧 ← 𝒟, ℎ ← ℋ, and 𝑠𝑘

• 𝒜1 𝑆𝑥,𝑧 , 𝒞𝑠𝑘 𝑆, ℎ , 𝑏 ⊕ ℎ 𝑥 → 𝜋, st

• If 𝜋 ∉ 𝑆⊥ + 𝑧, output 𝑏′ ← {0,1}
• Otherwise, output 𝑏′ ← 𝒜2 st, 𝑠𝑘

Want: ห

ห

Pr CDExp𝒞,ℋ,𝒟,𝒜1,𝒜2
0 = 1 −

Pr CDExp𝒞,ℋ,𝒟,𝒜1,𝒜2
1 = 1 = negl

• [Broadbent, Islam 20]:
• 𝒞 one-time pad
• ℋ good randomness extractor
• 𝒟 Wiesner states
• (𝒜1, 𝒜2) unbounded

History

Security Game
CDExp𝒞,ℋ,𝒟,𝒜1,𝒜2

(𝑏)
• Sample 𝑆, 𝑥, 𝑧 ← 𝒟, ℎ ← ℋ, and 𝑠𝑘

• 𝒜1 𝑆𝑥,𝑧 , 𝒞𝑠𝑘 𝑆, ℎ , 𝑏 ⊕ ℎ 𝑥 → 𝜋, st

• If 𝜋 ∉ 𝑆⊥ + 𝑧, output 𝑏′ ← {0,1}
• Otherwise, output 𝑏′ ← 𝒜2 st, 𝑠𝑘

Want: ห

ห

Pr CDExp𝒞,ℋ,𝒟,𝒜1,𝒜2
0 = 1 −

Pr CDExp𝒞,ℋ,𝒟,𝒜1,𝒜2
1 = 1 = negl

• [Broadbent, Islam 20]:
• 𝒞 one-time pad
• ℋ good randomness extractor
• 𝒟 Wiesner states
• (𝒜1, 𝒜2) unbounded

• [Hiroka, Morimae, Nishimaki, Yamakawa 21]:
• 𝒞 non-committing encryption scheme
• ℋ good randomness extractor
• 𝒟 Wiesner states
• 𝒜1, 𝒜2 computationally bounded

History

Security Game
CDExp𝒞,ℋ,𝒟,𝒜1,𝒜2

(𝑏)
• Sample 𝑆, 𝑥, 𝑧 ← 𝒟, ℎ ← ℋ, and 𝑠𝑘

• 𝒜1 𝑆𝑥,𝑧 , 𝒞𝑠𝑘 𝑆, ℎ , 𝑏 ⊕ ℎ 𝑥 → 𝜋, st

• If 𝜋 ∉ 𝑆⊥ + 𝑧, output 𝑏′ ← {0,1}
• Otherwise, output 𝑏′ ← 𝒜2 st, 𝑠𝑘

Want: ห

ห

Pr CDExp𝒞,ℋ,𝒟,𝒜1,𝒜2
0 = 1 −

Pr CDExp𝒞,ℋ,𝒟,𝒜1,𝒜2
1 = 1 = negl

• [Broadbent, Islam 20]:
• 𝒞 one-time pad
• ℋ good randomness extractor
• 𝒟 Wiesner states
• (𝒜1, 𝒜2) unbounded

• [Hiroka, Morimae, Nishimaki, Yamakawa 21]:
• 𝒞 non-committing encryption scheme
• ℋ good randomness extractor
• 𝒟 Wiesner states
• 𝒜1, 𝒜2 computationally bounded

• [B, Khurana 23]:
• 𝒞 semantically-secure distribution
• ℋ=⊕
• 𝒟 Wiesner states
• 𝒜1 computationally bounded, 𝒜2 unbounded

History

Security Game
CDExp𝒞,ℋ,𝒟,𝒜1,𝒜2

(𝑏)
• Sample 𝑆, 𝑥, 𝑧 ← 𝒟, ℎ ← ℋ, and 𝑠𝑘

• 𝒜1 𝑆𝑥,𝑧 , 𝒞𝑠𝑘 𝑆, ℎ , 𝑏 ⊕ ℎ 𝑥 → 𝜋, st

• If 𝜋 ∉ 𝑆⊥ + 𝑧, output 𝑏′ ← {0,1}
• Otherwise, output 𝑏′ ← 𝒜2 st, 𝑠𝑘

Want: ห

ห

Pr CDExp𝒞,ℋ,𝒟,𝒜1,𝒜2
0 = 1 −

Pr CDExp𝒞,ℋ,𝒟,𝒜1,𝒜2
1 = 1 = negl

• [Broadbent, Islam 20]:
• 𝒞 one-time pad
• ℋ good randomness extractor
• 𝒟 Wiesner states
• (𝒜1, 𝒜2) unbounded

• [Hiroka, Morimae, Nishimaki, Yamakawa 21]:
• 𝒞 non-committing encryption scheme
• ℋ good randomness extractor
• 𝒟 Wiesner states
• 𝒜1, 𝒜2 computationally bounded

• [B, Khurana 23]:
• 𝒞 semantically-secure distribution
• ℋ=⊕
• 𝒟 Wiesner states
• 𝒜1 computationally bounded, 𝒜2 unbounded

• [B, Garg, Goyal, Khurana, Malavolta, Raizes, Roberts 23]
• 𝒞 subspace-hiding distribution
• ℋ=⊕
• 𝒟 subspace states
• 𝒜1 computationally bounded, 𝒜2 unbounded

History

Security Game
CDExp𝒞,ℋ,𝒟,𝒜1,𝒜2

(𝑏)
• Sample 𝑆, 𝑥, 𝑧 ← 𝒟, ℎ ← ℋ, and 𝑠𝑘

• 𝒜1 𝑆𝑥,𝑧 , 𝒞𝑠𝑘 𝑆, ℎ , 𝑏 ⊕ ℎ 𝑥 → 𝜋, st

• If 𝜋 ∉ 𝑆⊥ + 𝑧, output 𝑏′ ← {0,1}
• Otherwise, output 𝑏′ ← 𝒜2 st, 𝑠𝑘

Want: ห

ห

Pr CDExp𝒞,ℋ,𝒟,𝒜1,𝒜2
0 = 1 −

Pr CDExp𝒞,ℋ,𝒟,𝒜1,𝒜2
1 = 1 = negl

• [Broadbent, Islam 20]:
• 𝒞 one-time pad
• ℋ good randomness extractor
• 𝒟 Wiesner states
• (𝒜1, 𝒜2) unbounded

• [Hiroka, Morimae, Nishimaki, Yamakawa 21]:
• 𝒞 non-committing encryption scheme
• ℋ good randomness extractor
• 𝒟 Wiesner states
• 𝒜1, 𝒜2 computationally bounded

• [B, Khurana 23]:
• 𝒞 semantically-secure distribution
• ℋ=⊕
• 𝒟 Wiesner states
• 𝒜1 computationally bounded, 𝒜2 unbounded

• [B, Garg, Goyal, Khurana, Malavolta, Raizes, Roberts 23]
• 𝒞 subspace-hiding distribution
• ℋ=⊕
• 𝒟 subspace states
• 𝒜1 computationally bounded, 𝒜2 unbounded

Note: [Unruh 13] showed similar statement for a
slightly different template supporting quantum

certificates of deletion

History

Example Proof

• Let 𝒞 be a computationally-hiding statistically-binding commitment
• Let ℋ =⊕ (unseeded)
• Let 𝒟 sample a uniformly random (𝑆, 𝑥, 𝑧)
• Let 𝒜1 be computationally bounded and 𝒜2 be unbounded

Example Proof

• Let 𝒞 be a computationally-hiding statistically-binding commitment
• Let ℋ =⊕ (unseeded)
• Let 𝒟 sample a uniformly random (𝑆, 𝑥, 𝑧)
• Let 𝒜1 be computationally bounded and 𝒜2 be unbounded

Hyb0 𝑏𝒜 𝐶ℎ
Sample 𝑆, 𝑥, 𝑧

Com 𝑆 , 𝑏 ⊕𝑖 𝑥𝑖 , |𝑆𝑥,𝑧⟩

𝜋, st

If 𝜋 ∉ 𝑆⊥ + 𝑧, output ⊥ ⊥
Otherwise, output st

Example Proof

• Let 𝒞 be a computationally-hiding statistically-binding commitment
• Let ℋ =⊕ (unseeded)
• Let 𝒟 sample a uniformly random (𝑆, 𝑥, 𝑧)
• Let 𝒜1 be computationally bounded and 𝒜2 be unbounded

Goal: Show that TD Hyb0 0 ,Hyb0 1 = negl

Hyb0 𝑏𝒜 𝐶ℎ
Sample 𝑆, 𝑥, 𝑧

Com 𝑆 , 𝑏 ⊕𝑖 𝑥𝑖 , |𝑆𝑥,𝑧⟩

𝜋, st

If 𝜋 ∉ 𝑆⊥ + 𝑧, output ⊥ ⊥
Otherwise, output st

Example Proof

Hybrid 1: Delay the dependence of the experiment on 𝑏

Example Proof

Hyb1 𝑏𝒜 𝐶ℎ

Com 𝑆 , 𝑏′, |𝑆𝑥,𝑧⟩

𝜋, st

Sample 𝑆, 𝑥, 𝑧
Sample 𝑏′ ← {0,1}

If 𝜋 ∉ 𝑆⊥ + 𝑧, output ⊥ ⊥
If 𝑏 ⊕𝑖 𝑥𝑖 ≠ 𝑏′, output ⊥ ⊥
Otherwise, output st

Hybrid 1: Delay the dependence of the experiment on 𝑏

TD Hyb1 0 ,Hyb1 1 =
1

2
TD Hyb0 0 ,Hyb0 1

Example Proof

Hyb1 𝑏𝒜 𝐶ℎ

Com 𝑆 , 𝑏′, |𝑆𝑥,𝑧⟩

𝜋, st

Sample 𝑆, 𝑥, 𝑧
Sample 𝑏′ ← {0,1}

If 𝜋 ∉ 𝑆⊥ + 𝑧, output ⊥ ⊥
If 𝑏 ⊕𝑖 𝑥𝑖 ≠ 𝑏′, output ⊥ ⊥
Otherwise, output st

Hybrid 1: Delay the dependence of the experiment on 𝑏

TD Hyb1 0 ,Hyb1 1 =
1

2
TD Hyb0 0 ,Hyb0 1

Example Proof

Remains to show that 𝑥
has a lot of conditional

min-entropy

Hyb1 𝑏𝒜 𝐶ℎ

Com 𝑆 , 𝑏′, |𝑆𝑥,𝑧⟩

𝜋, st

Sample 𝑆, 𝑥, 𝑧
Sample 𝑏′ ← {0,1}

If 𝜋 ∉ 𝑆⊥ + 𝑧, output ⊥ ⊥
If 𝑏 ⊕𝑖 𝑥𝑖 ≠ 𝑏′, output ⊥ ⊥
Otherwise, output st

Example Proof Want to show: If 𝒜(|𝑆𝑥,𝑧⟩, Com(𝑆)) outputs 𝜋 ∈ 𝑆⊥ + 𝑧,
then 𝑥 has a lot of conditional min-entropy

Example Proof Want to show: If 𝒜(|𝑆𝑥,𝑧⟩, Com(𝑆)) outputs 𝜋 ∈ 𝑆⊥ + 𝑧,
then 𝑥 has a lot of conditional min-entropy

𝒜(|𝑆𝑥,𝑧⟩, Com(𝑆)) → 𝜋

Example Proof Want to show: If 𝒜(|𝑆𝑥,𝑧⟩, Com(𝑆)) outputs 𝜋 ∈ 𝑆⊥ + 𝑧,
then 𝑥 has a lot of conditional min-entropy

𝒜(|𝑆𝑥,𝑧⟩, Com(𝑆)) → 𝜋

𝒜(|𝑆𝑥,𝑧⟩, Com(𝑆)) → 𝜋෍

𝑥∈co(𝑆)

|𝑥⟩

Purify

Example Proof Want to show: If 𝒜(|𝑆𝑥,𝑧⟩, Com(𝑆)) outputs 𝜋 ∈ 𝑆⊥ + 𝑧,
then 𝑥 has a lot of conditional min-entropy

𝒜(|𝑆𝑥,𝑧⟩, Com(𝑆)) → 𝜋

𝒜(|𝑆𝑥,𝑧⟩, Com(𝑆)) → 𝜋෍

𝑥∈co(𝑆)

|𝑥⟩
U𝑆 𝑥 → ෍

𝑣∈𝑆⊥

−1 𝑣⋅𝑥|𝑣⟩

U𝑆
† 𝑣 → ෍

𝑥∈co(𝑆)

−1 𝑣⋅𝑥|𝑥⟩

For 𝑥 ∈ co 𝑆 :

For 𝑣 ∈ 𝑆⊥:

Purify

Example Proof Want to show: If 𝒜(|𝑆𝑥,𝑧⟩, Com(𝑆)) outputs 𝜋 ∈ 𝑆⊥ + 𝑧,
then 𝑥 has a lot of conditional min-entropy

𝒜(|𝑆𝑥,𝑧⟩, Com(𝑆)) → 𝜋

𝒜(|𝑆𝑥,𝑧⟩, Com(𝑆)) → 𝜋෍

𝑥∈co(𝑆)

|𝑥⟩

𝒜(෍

𝑤

−1 𝑤⋅(𝑧+𝑣)|𝑤⟩ , Com(𝑆)) → 𝜋෍

𝑣∈𝑆⊥

|𝑣⟩

U𝑆 𝑥 → ෍

𝑣∈𝑆⊥

−1 𝑣⋅𝑥|𝑣⟩

U𝑆
† 𝑣 → ෍

𝑥∈co(𝑆)

−1 𝑣⋅𝑥|𝑥⟩U𝑆

For 𝑥 ∈ co 𝑆 :

For 𝑣 ∈ 𝑆⊥:

Purify

Example Proof
𝒜(|𝑆𝑥,𝑧⟩, Com(𝑆)) → 𝜋

𝒜(|𝑆𝑥,𝑧⟩, Com(𝑆)) → 𝜋෍

𝑥∈co(𝑆)

|𝑥⟩

𝒜(H⊗𝑛|𝑣 + 𝑧⟩, Com(𝑆)) → 𝜋෍

𝑣∈𝑆⊥

|𝑣⟩

U𝑆 𝑥 → ෍

𝑣∈𝑆⊥

−1 𝑣⋅𝑥|𝑣⟩

U𝑆
† 𝑣 → ෍

𝑥∈co(𝑆)

−1 𝑣⋅𝑥|𝑥⟩U𝑆

Purify
For 𝑥 ∈ co 𝑆 :

For 𝑣 ∈ 𝑆⊥:

Want to show: If 𝒜(|𝑆𝑥,𝑧⟩, Com(𝑆)) outputs 𝜋 ∈ 𝑆⊥ + 𝑧,
then 𝑥 has a lot of conditional min-entropy

Example Proof
𝒜(|𝑆𝑥,𝑧⟩, Com(𝑆)) → 𝜋

𝒜(|𝑆𝑥,𝑧⟩, Com(𝑆)) → 𝜋෍

𝑥∈co(𝑆)

|𝑥⟩

𝒜(H⊗𝑛|𝑣 + 𝑧⟩, Com(𝑆)) → 𝜋෍

𝑣∈𝑆⊥

|𝑣⟩

U𝑆 𝑥 → ෍

𝑣∈𝑆⊥

−1 𝑣⋅𝑥|𝑣⟩

U𝑆
† 𝑣 → ෍

𝑥∈co(𝑆)

−1 𝑣⋅𝑥|𝑥⟩U𝑆

Purify
For 𝑥 ∈ co 𝑆 :

For 𝑣 ∈ 𝑆⊥:

Claim: if 𝒜 given random 𝑣 + 𝑧 and outputs 𝜋 ∈ 𝑆⊥ + 𝑧,
then 𝜋 = 𝑣 + 𝑧 with overwhelming probability (over 𝑆, 𝑧)

Want to show: If 𝒜(|𝑆𝑥,𝑧⟩, Com(𝑆)) outputs 𝜋 ∈ 𝑆⊥ + 𝑧,
then 𝑥 has a lot of conditional min-entropy

Example Proof
𝒜(|𝑆𝑥,𝑧⟩, Com(𝑆)) → 𝜋

𝒜(|𝑆𝑥,𝑧⟩, Com(𝑆)) → 𝜋෍

𝑥∈co(𝑆)

|𝑥⟩

𝒜(H⊗𝑛|𝑣 + 𝑧⟩, Com(𝑆)) → 𝜋෍

𝑣∈𝑆⊥

|𝑣⟩

U𝑆 𝑥 → ෍

𝑣∈𝑆⊥

−1 𝑣⋅𝑥|𝑣⟩

U𝑆
† 𝑣 → ෍

𝑥∈co(𝑆)

−1 𝑣⋅𝑥|𝑥⟩U𝑆

Purify
For 𝑥 ∈ co 𝑆 :

For 𝑣 ∈ 𝑆⊥:

Claim: if 𝒜 given random 𝑣 + 𝑧 and outputs 𝜋 ∈ 𝑆⊥ + 𝑧,
then 𝜋 = 𝑣 + 𝑧 with overwhelming probability (over 𝑆, 𝑧)

Project

|𝜋 − 𝑧⟩

Want to show: If 𝒜(|𝑆𝑥,𝑧⟩, Com(𝑆)) outputs 𝜋 ∈ 𝑆⊥ + 𝑧,
then 𝑥 has a lot of conditional min-entropy

Example Proof
𝒜(|𝑆𝑥,𝑧⟩, Com(𝑆)) → 𝜋

𝒜(|𝑆𝑥,𝑧⟩, Com(𝑆)) → 𝜋෍

𝑥∈co(𝑆)

|𝑥⟩

𝒜(H⊗𝑛|𝑣 + 𝑧⟩, Com(𝑆)) → 𝜋෍

𝑣∈𝑆⊥

|𝑣⟩

U𝑆 𝑥 → ෍

𝑣∈𝑆⊥

−1 𝑣⋅𝑥|𝑣⟩

U𝑆
† 𝑣 → ෍

𝑥∈co(𝑆)

−1 𝑣⋅𝑥|𝑥⟩U𝑆

Purify
For 𝑥 ∈ co 𝑆 :

For 𝑣 ∈ 𝑆⊥:

Claim: if 𝒜 given random 𝑣 + 𝑧 and outputs 𝜋 ∈ 𝑆⊥ + 𝑧,
then 𝜋 = 𝑣 + 𝑧 with overwhelming probability (over 𝑆, 𝑧)

Project

|𝜋 − 𝑧⟩

U𝑆
†

෍

𝑥∈co(𝑆)

−1 (𝜋−𝑧)⋅𝑥|𝑥⟩

Want to show: If 𝒜(|𝑆𝑥,𝑧⟩, Com(𝑆)) outputs 𝜋 ∈ 𝑆⊥ + 𝑧,
then 𝑥 has a lot of conditional min-entropy

Example Proof
𝒜(|𝑆𝑥,𝑧⟩, Com(𝑆)) → 𝜋

𝒜(|𝑆𝑥,𝑧⟩, Com(𝑆)) → 𝜋෍

𝑥∈co(𝑆)

|𝑥⟩

𝒜(H⊗𝑛|𝑣 + 𝑧⟩, Com(𝑆)) → 𝜋෍

𝑣∈𝑆⊥

|𝑣⟩

U𝑆 𝑥 → ෍

𝑣∈𝑆⊥

−1 𝑣⋅𝑥|𝑣⟩

U𝑆
† 𝑣 → ෍

𝑥∈co(𝑆)

−1 𝑣⋅𝑥|𝑥⟩U𝑆

Purify
For 𝑥 ∈ co 𝑆 :

For 𝑣 ∈ 𝑆⊥:

Claim: if 𝒜 given random 𝑣 + 𝑧 and outputs 𝜋 ∈ 𝑆⊥ + 𝑧,
then 𝜋 = 𝑣 + 𝑧 with overwhelming probability (over 𝑆, 𝑧)

Project

|𝜋 − 𝑧⟩

U𝑆
†

෍

𝑥∈co(𝑆)

−1 (𝜋−𝑧)⋅𝑥|𝑥⟩ Measuring gives a uniformly random
𝑥 ∈ co(𝑆), independent of 𝒜’s view

Want to show: If 𝒜(|𝑆𝑥,𝑧⟩, Com(𝑆)) outputs 𝜋 ∈ 𝑆⊥ + 𝑧,
then 𝑥 has a lot of conditional min-entropy

Outline

1. Basic scenario and applications

2. Recipe for constructions

3. Security

4. Certifiable deletion of programs

Plan

• (Indistinguishability) obfuscation with certified deletion

• Applications

• Comparison with other notions

copy-detection

Obfuscation with Certified Deletion

Obfuscation with Certified Deletion

Rough goal:

Obfuscation with Certified Deletion

Rough goal:
• Encode a program 𝑓 into a deletable quantum state

Obfuscation with Certified Deletion

Rough goal:
• Encode a program 𝑓 into a deletable quantum state
• Before deletion, the program is useful in some way, after deletion it is not

Obfuscation with Certified Deletion

Rough goal:
• Encode a program 𝑓 into a deletable quantum state
• Before deletion, the program is useful in some way, after deletion it is not

Candidate construction: 𝑆𝑥,𝑧 , CObf P[𝑆, 𝑓 ⊕ 𝑥]

P 𝑆, ሚ𝑓 𝑦, 𝑣 :
• Let 𝑥 be the coset of 𝑆 that 𝑣 belongs to
• Let 𝑓 = ሚ𝑓 ⊕ 𝑥
• Output 𝑓(𝑦)

[BGGKMRR23]

Obfuscation with Certified Deletion

Rough goal:
• Encode a program 𝑓 into a deletable quantum state
• Before deletion, the program is useful in some way, after deletion it is not

Candidate construction: 𝑆𝑥,𝑧 , CObf P[𝑆, 𝑓 ⊕ 𝑥]

P 𝑆, ሚ𝑓 𝑦, 𝑣 :
• Let 𝑥 be the coset of 𝑆 that 𝑣 belongs to
• Let 𝑓 = ሚ𝑓 ⊕ 𝑥
• Output 𝑓(𝑦)

[BGGKMRR23]

A “one-way” compiler that
scrambles the description of a circuit

while maintaining its functionality

Obfuscation with Certified Deletion

Rough goal:
• Encode a program 𝑓 into a deletable quantum state
• Before deletion, the program is useful in some way, after deletion it is not

Candidate construction: 𝑆𝑥,𝑧 , CObf P[𝑆, 𝑓 ⊕ 𝑥]

P 𝑆, ሚ𝑓 𝑦, 𝑣 :
• Let 𝑥 be the coset of 𝑆 that 𝑣 belongs to
• Let 𝑓 = ሚ𝑓 ⊕ 𝑥
• Output 𝑓(𝑦)

Correctness: Given any input 𝑦, evaluate Obf P[𝑆, 𝑓 ⊕ 𝑥] on 𝑦 and in
superposition over 𝑆 + 𝑥 to learn 𝑓(𝑦)

[BGGKMRR23]

Obfuscation with Certified Deletion

Rough goal:
• Encode a program 𝑓 into a deletable quantum state
• Before deletion, the program is useful in some way, after deletion it is not

Candidate construction:

Issue with security: By querying on different 𝑣 ∉ 𝑆 + 𝑥, can potentially learn
evaluations of functions whose description is related to 𝑓

𝑆𝑥,𝑧 , CObf P[𝑆, 𝑓 ⊕ 𝑥]

P 𝑆, ሚ𝑓 𝑦, 𝑣 :
• Let 𝑥 be the coset of 𝑆 that 𝑣 belongs to
• Let 𝑓 = ሚ𝑓 ⊕ 𝑥
• Output 𝑓(𝑦)

[BGGKMRR23]

Obfuscation with Certified Deletion

Rough goal:
• Encode a program 𝑓 into a deletable quantum state
• Before deletion, the program is useful in some way, after deletion it is not

Candidate construction:

P should only accept authentic vectors 𝑣 derived from the state 𝑆𝑥,𝑧Solution:

𝑆𝑥,𝑧 , CObf P[𝑆, 𝑓 ⊕ 𝑥]

P 𝑆, ሚ𝑓 𝑦, 𝑣 :
• Let 𝑥 be the coset of 𝑆 that 𝑣 belongs to
• Let 𝑓 = ሚ𝑓 ⊕ 𝑥
• Output 𝑓(𝑦)

[BGGKMRR23]

Obfuscation with Certified Deletion

Rough goal:
• Encode a program 𝑓 into a deletable quantum state
• Before deletion, the program is useful in some way, after deletion it is not

Candidate construction:

P should only accept authentic vectors 𝑣 derived from the state 𝑆𝑥,𝑧
Define authentic vectors via a random superspace 𝑇 + 𝑢 ⊃ 𝑆 + 𝑥

Solution:

𝑆𝑥,𝑧 , CObf P[𝑆, 𝑇, 𝑢, 𝑓 ⊕ 𝑥]

P 𝑆, 𝑇, 𝑢, ሚ𝑓 𝑦, 𝑣 :
• Abort if 𝑣 ∉ 𝑇 + 𝑢
• Let 𝑥 be the coset of 𝑆 that 𝑣 belongs to

• Let 𝑓 = ሚ𝑓 ⊕ 𝑥
• Output 𝑓(𝑦)

[BGGKMRR23]

Obfuscation with Certified Deletion

Rough goal:
• Encode a program 𝑓 into a deletable quantum state
• Before deletion, the program is useful in some way, after deletion it is not

Candidate construction:

P should only accept authentic vectors 𝑣 derived from the state 𝑆𝑥,𝑧
Define authentic vectors via a random superspace 𝑇 + 𝑢 ⊃ 𝑆 + 𝑥
Hard for the adversary to query on any authentic vector not in 𝑆 + 𝑥

Solution:

𝑆𝑥,𝑧 , CObf P[𝑆, 𝑇, 𝑢, 𝑓 ⊕ 𝑥]

P 𝑆, 𝑇, 𝑢, ሚ𝑓 𝑦, 𝑣 :
• Abort if 𝑣 ∉ 𝑇 + 𝑢
• Let 𝑥 be the coset of 𝑆 that 𝑣 belongs to

• Let 𝑓 = ሚ𝑓 ⊕ 𝑥
• Output 𝑓(𝑦)

[BGGKMRR23]

Obfuscation with Certified Deletion

Candidate construction:

P should only accept authentic vectors 𝑣 derived from the state 𝑆𝑥,𝑧
Define authentic vectors via a random superspace 𝑇 + 𝑢 ⊃ 𝑆 + 𝑥
Hard for the adversary to query on any authentic vector not in 𝑆 + 𝑥

Solution:

If CObf is modeled as a classical oracle:
• Before deletion, evaluator can use the oracle to learn 𝑓(𝑦) for any 𝑦 of their choice
• After deletion (outputting 𝑣 ∈ 𝑆⊥ + 𝑧), the evaluator cannot learn anything else from

the oracle even given unbounded queries

[BGGKMRR23]

𝑆𝑥,𝑧 , CObf P[𝑆, 𝑇, 𝑢, 𝑓 ⊕ 𝑥]

P 𝑆, 𝑇, 𝑢, ሚ𝑓 𝑦, 𝑣 :
• Abort if 𝑣 ∉ 𝑇 + 𝑢
• Let 𝑥 be the coset of 𝑆 that 𝑣 belongs to

• Let 𝑓 = ሚ𝑓 ⊕ 𝑥
• Output 𝑓(𝑦)

Without Oracles…

Without Oracles…

Indistinguishability obfuscation

Without Oracles…

Indistinguishability obfuscation
• For any two functionally equivalent circuits C0, C1, Obf C0 ≈𝑐 Obf(C1)

Without Oracles…

Indistinguishability obfuscation with certified deletion
• For any two functionally equivalent circuits C0, C1, Obf C0 ≈𝑐 Obf(C1), and after

deletion Obf C0 ≈𝑠 Obf(C1)

Without Oracles…

Indistinguishability obfuscation with certified deletion
• For any two functionally equivalent circuits C0, C1, Obf C0 ≈𝑐 Obf(C1), and after

deletion Obf C0 ≈𝑠 Obf(C1)

Satisfied by a slightly modified construction

Without Oracles…

Indistinguishability obfuscation with certified deletion
• For any two functionally equivalent circuits C0, C1, Obf C0 ≈𝑐 Obf(C1), and after

deletion Obf C0 ≈𝑠 Obf(C1)

Satisfied by a slightly modified construction

Seems like a weak guarantee, but (differing inputs) iO with CD are useful tools:

Without Oracles…

Indistinguishability obfuscation with certified deletion
• For any two functionally equivalent circuits C0, C1, Obf C0 ≈𝑐 Obf(C1), and after

deletion Obf C0 ≈𝑠 Obf(C1)

Satisfied by a slightly modified construction

Seems like a weak guarantee, but (differing inputs) iO with CD are useful tools:
• Two-message delegation with certified deletion

Without Oracles…

Indistinguishability obfuscation with certified deletion
• For any two functionally equivalent circuits C0, C1, Obf C0 ≈𝑐 Obf(C1), and after

deletion Obf C0 ≈𝑠 Obf(C1)

Satisfied by a slightly modified construction

Seems like a weak guarantee, but (differing inputs) iO with CD are useful tools:
• Two-message delegation with certified deletion
• A generic compiler from encryption to encryption with revocable secret keys

Encryption with Revocable / Deletable Secret Keys

• Gen → pk, vk, |sk⟩
• Enc pk,𝑚 → ct
• Dec |sk⟩, ct → 𝑚
• Del(|sk⟩) → cert
• Ver vk, cert → ⊤/⊥

Encryption with Revocable / Deletable Secret Keys

• Gen → pk, vk, |sk⟩
• Enc pk,𝑚 → ct
• Dec |sk⟩, ct → 𝑚
• Del(|sk⟩) → cert
• Ver vk, cert → ⊤/⊥

Deletion security: ciphertexts
generated after successful deletion
of |sk⟩ are semantically secure

Encryption with Revocable / Deletable Secret Keys

• Gen → pk, vk, |sk⟩
• Enc pk,𝑚 → ct
• Dec |sk⟩, ct → 𝑚
• Del(|sk⟩) → cert
• Ver vk, cert → ⊤/⊥

Deletion security: ciphertexts
generated after successful deletion
of |sk⟩ are semantically secure

Simple compiler: sk = iOCD(Dec(sk,⋅)) [BGGMKRR23]

Encryption with Revocable / Deletable Secret Keys

• Gen → pk, vk, |sk⟩
• Enc pk,𝑚 → ct
• Dec |sk⟩, ct → 𝑚
• Del(|sk⟩) → cert
• Ver vk, cert → ⊤/⊥

Deletion security: ciphertexts
generated after successful deletion
of |sk⟩ are semantically secure

Simple compiler: sk = iOCD(Dec(sk,⋅)) [BGGMKRR23]

Gives publicly-verifiable revocation if iOCD is publicly verifiable

Encryption with Revocable / Deletable Secret Keys

• Gen → pk, vk, |sk⟩
• Enc pk,𝑚 → ct
• Dec |sk⟩, ct → 𝑚
• Del(|sk⟩) → cert
• Ver vk, cert → ⊤/⊥

Deletion security: ciphertexts
generated after successful deletion
of |sk⟩ are semantically secure

Simple compiler: sk = iOCD(Dec(sk,⋅)) [BGGMKRR23]

Gives publicly-verifiable revocation if iOCD is publicly verifiable

Privately-verifiable revocation from standard assumptions:
[Kitagawa, Nishimaki 22], [Agarwal, Kitagawa, Nishimaki, Yamada,
Yamakawa 23], [Ananth, Poremba, Vaikuntanathan 23]

Related Notions Hard for the adversary to produce…

“working” copy
of a program publicly verifiable privately verifiablecertificate derived

from program

Related Notions Hard for the adversary to produce…

“working” copy
of a program publicly verifiable privately verifiablecertificate derived

from program

Copy Protection:
[Aaronson 09]

Related Notions Hard for the adversary to produce…

“working” copy
of a program publicly verifiable privately verifiablecertificate derived

from program

Copy Protection:
[Aaronson 09]

Copy Detection / Infinite-Term Secure Software Leasing:
[Ananth, La Placa 21], [Aaronson, Liu, Liu, Zhandry, Zhang 22]

Finite-Term Secure Software Leasing:
[AL21]

Related Notions Hard for the adversary to produce…

“working” copy
of a program publicly verifiable privately verifiablecertificate derived

from program

Copy Protection:
[Aaronson 09]

Publicly-Verifiable Deletion / Revocation:
[BGGKMRR23]

Privately-Verifiable Deletion / Revocation:
[KN22], [AKNYY23], [APV23]

Copy Detection / Infinite-Term Secure Software Leasing:
[Ananth, La Placa 21], [Aaronson, Liu, Liu, Zhandry, Zhang 22]

Finite-Term Secure Software Leasing:
[AL21]

Future Directions

Future Directions

• Prove the security of CDExp𝒞,ℋ,𝒟,𝒜1,𝒜2
when

Future Directions

• Prove the security of CDExp𝒞,ℋ,𝒟,𝒜1,𝒜2
when

• Encoding super-logarithmic bits per subspace state

Future Directions

• Prove the security of CDExp𝒞,ℋ,𝒟,𝒜1,𝒜2
when

• Encoding super-logarithmic bits per subspace state
• 𝒞 is any semantically-secure distribution and ℋ is a good seeded randomness

extractor

Future Directions

• Prove the security of CDExp𝒞,ℋ,𝒟,𝒜1,𝒜2
when

• Encoding super-logarithmic bits per subspace state
• 𝒞 is any semantically-secure distribution and ℋ is a good seeded randomness

extractor

• Robustness to noise (beyond one-time pad [BI20])

Future Directions

• Prove the security of CDExp𝒞,ℋ,𝒟,𝒜1,𝒜2
when

• Encoding super-logarithmic bits per subspace state
• 𝒞 is any semantically-secure distribution and ℋ is a good seeded randomness

extractor

• Robustness to noise (beyond one-time pad [BI20])

• Publicly-verifiable revocation/deletion without post-quantum iO

Future Directions

• Prove the security of CDExp𝒞,ℋ,𝒟,𝒜1,𝒜2
when

• Encoding super-logarithmic bits per subspace state
• 𝒞 is any semantically-secure distribution and ℋ is a good seeded randomness

extractor

• Robustness to noise (beyond one-time pad [BI20])

• Publicly-verifiable revocation/deletion without post-quantum iO

• More rigorous understanding of the relationship between unclonable primitives from
previous slide ([Ananth, Kaleoglu, Liu 23])

	Slide 1: Tutorial Talk: Certified Deletion
	Slide 2: Outline
	Slide 3: Outline
	Slide 4: Certified Deletion: Cloud Storage
	Slide 5: Certified Deletion: Cloud Storage
	Slide 6: Certified Deletion: Cloud Storage
	Slide 7: Certified Deletion: Cloud Storage
	Slide 8
	Slide 9: Certified Deletion: Cloud Storage
	Slide 10: Certified Deletion: Cloud Storage
	Slide 11: Certified Deletion: Cloud Storage
	Slide 12: Certified Deletion: Cloud Storage
	Slide 13: Certified Deletion: Cloud Storage
	Slide 14: Certified Deletion: Delegation
	Slide 15: Certified Deletion: Delegation
	Slide 16: Certified Deletion: Delegation
	Slide 17: Certified Deletion: Delegation
	Slide 18: Certified Deletion: Delegation
	Slide 19: Certified Deletion: Timed-Release Encryption
	Slide 20: Certified Deletion: Timed-Release Encryption
	Slide 21: Certified Deletion: Timed-Release Encryption
	Slide 22: Certified Deletion: Timed-Release Encryption
	Slide 23: Certified Deletion: Timed-Release Encryption
	Slide 24: Certified Deletion: Timed-Release Encryption
	Slide 25: Certified Deletion: Timed-Release Encryption
	Slide 26: Outline
	Slide 27: Approach
	Slide 28: Approach
	Slide 29: Approach
	Slide 30: Approach
	Slide 31: Approach
	Slide 32: Approach
	Slide 33: General Recipe
	Slide 34: General Recipe
	Slide 35: General Recipe
	Slide 36: General Recipe
	Slide 37: General Recipe
	Slide 38: General Recipe
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47: Instantiatiating the distribution over cap S
	Slide 48: Instantiatiating the distribution over cap S
	Slide 49: Instantiatiating the distribution over cap S
	Slide 50: Instantiatiating the distribution over cap S
	Slide 51: Instantiatiating the distribution over cap S
	Slide 52: Instantiatiating the distribution over cap S
	Slide 53: Instantiatiating the distribution over cap S
	Slide 54: Instantiatiating the distribution over cap S
	Slide 55: Instantiatiating the distribution over cap S
	Slide 56: Instantiatiating the distribution over cap S
	Slide 57: Instantiatiating the distribution over cap S
	Slide 58: Instantiatiating the distribution over cap S
	Slide 59: Instantiatiating the distribution over cap S
	Slide 60: Instantiatiating the distribution over cap S
	Slide 61: Instantiatiating the distribution over cap S
	Slide 62: Instantiatiating the distribution over cap S
	Slide 63: Outline
	Slide 64: Security Game
	Slide 65: Security Game
	Slide 66: Security Game
	Slide 67: Security Game
	Slide 68: Security Game
	Slide 69: Security Game
	Slide 70: Security Game
	Slide 71: Security Game
	Slide 72: Security Game
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80: Example Proof
	Slide 81: Example Proof
	Slide 82: Example Proof
	Slide 83: Example Proof
	Slide 84: Example Proof
	Slide 85: Example Proof
	Slide 86: Example Proof
	Slide 87: Example Proof
	Slide 88: Example Proof
	Slide 89: Example Proof
	Slide 90: Outline
	Slide 91: Plan
	Slide 92: Obfuscation with Certified Deletion
	Slide 93: Obfuscation with Certified Deletion
	Slide 94: Obfuscation with Certified Deletion
	Slide 95: Obfuscation with Certified Deletion
	Slide 96: Obfuscation with Certified Deletion
	Slide 97: Obfuscation with Certified Deletion
	Slide 98: Obfuscation with Certified Deletion
	Slide 99: Obfuscation with Certified Deletion
	Slide 100: Obfuscation with Certified Deletion
	Slide 101: Obfuscation with Certified Deletion
	Slide 102: Obfuscation with Certified Deletion
	Slide 103: Obfuscation with Certified Deletion
	Slide 104: Without Oracles…
	Slide 105: Without Oracles…
	Slide 106: Without Oracles…
	Slide 107: Without Oracles…
	Slide 108: Without Oracles…
	Slide 109: Without Oracles…
	Slide 110: Without Oracles…
	Slide 111: Without Oracles…
	Slide 112: Encryption with Revocable / Deletable Secret Keys
	Slide 113: Encryption with Revocable / Deletable Secret Keys
	Slide 114: Encryption with Revocable / Deletable Secret Keys
	Slide 115: Encryption with Revocable / Deletable Secret Keys
	Slide 116: Encryption with Revocable / Deletable Secret Keys
	Slide 117: Related Notions
	Slide 118: Related Notions
	Slide 119: Related Notions
	Slide 120: Related Notions
	Slide 121: Future Directions
	Slide 122: Future Directions
	Slide 123: Future Directions
	Slide 124: Future Directions
	Slide 125: Future Directions
	Slide 126: Future Directions
	Slide 127: Future Directions

