Tutorial Talk: Certified
Deletion

James Bartusek
UC Berkeley

Outline

Basic scenario and applications
Recipe for constructions

Security
Certifiable deletion of programs

s w e

Outline

1. Basic scenario and applications

Certified Deletion: Cloud Storage

Certified Deletion: Cloud Storage

Certified Deletion: Cloud Storage

)

[

e Assumption: Malicious server cannot recover D from the encoding in polynomial time

Certified Deletion: Cloud Storage

\Y]
I[o7)
>
/ “Please delete my data” ‘T@’)

>

e Assumption: Malicious server cannot recover D from the encoding in polynomial time

Certified Deletion: Cloud Storage
i)
/ “Please delete my data: ‘ﬁ)

R

e Assumption: Malicious server cannot recover D from the encoding in polynomial time

Certified Deletion: Cloud Storage

N
I[57)
4 “Please delete my data” ‘ﬁ>

>

R

e Assumption: Malicious server cannot recover D from the encoding in polynomial time
* Goal #1: After deletion, the server won’t be able to recover D even given €\

Certified Deletion: Cloud Storage

N
I[57)
4 “Please delete my data” ‘ﬁ>

>

R

e Assumption: Malicious server cannot recover D from the encoding in polynomial time
* Goal #1: After deletion, the server won’t be able to recover D even given €\
* Goal #2: After deletion, the server won’t be able to recover D even given unbounded time

Certified Deletion: Cloud Storage

N
I[57)
4 “Please delete my data” ‘ﬁ>

>

R

e Assumption: Malicious server cannot recover D from the encoding in polynomial time
Goal #1: After deletion, the server won’t be able to recover D even given G\

Goal #2: After deletion, the server won’t be able to recover D even given unbounded time
* Requirements: encryption + unclonability

[Broadbent, Islam 20]

Ce rt |f| ed D e ‘ et | O n) C | O u d Sto ra ge [Hiroka, Morimae, Nishimaki, Yamakawa 21]

N
I[57)
4 “Please delete my data” ‘ﬁ>

>

R

e Assumption: Malicious server cannot recover D from the encoding in polynomial time
Goal #1: After deletion, the server won’t be able to recover D even given G\

Goal #2: After deletion, the server won’t be able to recover D even given unbounded time
* Requirements: encryption + unclonability

[Broadbent, Islam 20]

Ce rt |f| ed D e ‘ et | O n) C | O u d Sto ra ge [Hiroka, Morimae, Nishimaki, Yamakawa 21]

Classically: [Garg, Goldwasser, Vasudevan 20]
\U
E

4 “Please delete my data” ‘ﬁ>
>

=Q

e Assumption: Malicious server cannot recover D from the encoding in polynomial time
Goal #1: After deletion, the server won’t be able to recover D even given G\

Goal #2: After deletion, the server won’t be able to recover D even given unbounded time
* Requirements: encryption + unclonability

Certified Deletion: Delegation

f |

Certified Deletion: Delegation

7. IE)

Certified Deletion: Delegation

Certified Deletion: Delegation

that they

* Server can compute and return f (D) along with a proof
erased all other information about D

If
1 Q)

Certified Deletion: Delegation

* Server can compute and return f (D) along with a proof
erased all other information about D

[Broadbent, Islam 20]
[Poremba 23]

[B, Garg, Goyal, Khurana,
Malavolta, Raizes, Roberts 23]

that they

Certified Deletion: Timed-Release Encryption

)

Certified Deletion: Timed-Release Encryption

)

After time T: ‘ D@)>

Certified Deletion: Timed-Release Encryption

) ®

/ Before time T':

“Please delete my data”>

Certified Deletion: Timed-Release Encryption

) ®

/ Before time T':
“Please delete my data”

>
Q

<

Certified Deletion: Timed-Release Encryption

) ®

/ Before time T':
“Please delete my data”

>
Q

<

e Wills

Certified Deletion: Timed-Release Encryption

) ®

/ Before time T':
“Please delete my data”

>
Q

<

e Wills

* Deposits

[Unruh 13]

Certified Deletion: Timed-Release Encryption B, Khurana 23]

) ®

Z Before time T:
“Please delete my data”

>
Q

<

e Wills

* Deposits

Outline

2. Recipe for constructions

Approach

Approach

* Modularize: think about the quantum information and crypto
components separately

Approach

* Modularize: think about the quantum information and crypto
components separately

* Take advantage of the uncertainty principle

Approach

* Modularize: think about the quantum information and crypto
components separately

* Take advantage of the uncertainty principle

* We need states that can simultaneously encode information in two
conjugate bases

Approach

* Modularize: think about the quantum information and crypto
components separately

* Take advantage of the uncertainty principle

* We need states that can simultaneously encode information in two
conjugate bases
* One basis will encode plaintext information

Approach

* Modularize: think about the quantum information and crypto
components separately

* Take advantage of the uncertainty principle

* We need states that can simultaneously encode information in two
conjugate bases
* One basis will encode plaintext information
* The other will encode valid deletion certificates

General Recipe

General Recipe

For a subspace S c % and vectors x € co(S), z € co(§%), define

1 ,
|Sx,2) = EZ(—D s + x)

SES

General Recipe

representatives of S

[CO(S): a set of coset]

For a subspace S c % and vectors x € co(S), z € co(§%), define

1 ,
|Sx,2) = EZ(—D s + x)

SES

General Recipe

representatives of S

[CO(S): a set of coset]

For a subspace S C IF’Z1 and vectors x € co(S),z € co(S1), define

Y

SES

Sike) = \/|ST > (=D +2)

SESl

Ger]eral Recipe [CO(S):aset ofcoset]

representatives of S

For a subspace S c % and vectors x € co(S), z € co(§%), define

R

SES

H®"I

Ske) = mZ(1)5%]s + z)

SESl

Uncertainty principle: A(|S,,) # (s€S +x,s' €St +2)

(if S, x, z are sufficiently random)

General Recipe

representatives of S

[CO(S): a set of coset]

For a subspace S c % and vectors x € co(S), z € co(§%), define

1
|Sx,z> = —,—Z(—1)5°Z|S + x) Use x to hide the plaintext
|S| SES
H®"I
1 . .
|Szl,x) = (—1)5*|s+z) Use z as certificate of deletion

V |SJ_| sesl

Uncertainty principle: A(|S,,) # (s€S +x,s' €St +2)

(if S, x, z are sufficiently random)

General Recipe

General Recipe

Notation

e (C:cryptosystem with decryption key sk
 H:family of hash functions

* D:adistribution over (S, x, z)

General Recipe

Notation

e (C:cryptosystem with decryption key sk
 H:family of hash functions

* D:adistribution over (S, x, z)

EncCD(b):

« Sample (S,x,z) « D

e Sampleh « H

* Output |Sy,), Csk (S, h), b @ h(x)

General Recipe

Notation Decryption given sk:

e (C:cryptosystem with decryption key sk Use sktolearnS andh

* H:family of hash functions - Measure |S, ,) in standard basis, and
* D:adistribution over (S, x, z) let x be the coset representative of

the resulting vector
* Use h(x) to learn the plaintext b

EncCD(b):

« Sample (S,x,z) « D

e Sampleh « H

* Output |Sy,), Csk (S, h), b @ h(x)

General Recipe

Notation Decryption given sk:

e (C:cryptosystem with decryption key sk Use sktolearnS andh

* H':family of hash functions * Measure |Sx,Z) in standard basis, and
* D:adistribution over (S, x, z) let x be the coset representative of

the resulting vector
* Use h(x) to learn the plaintext b

EncCD(b): Deletion:

* Sample (§,x,z) < D » Measure |S,) in Hadamard basis to
e Sampleh « H obtain a vector

e Qutput |Sx’z), Csk (S, h),b @D h(x) * Verification checks thatw € St + z

One-time pad
Public-key encryption

General Recipe commimen

Timed-release encryption

Notation " Decryption given sk:
e (C:|cryptosystem|with decryption key sk Use sktolearnS andh
* H':family of hash functions * Measure |Sx,Z) in standard basis, and
* D:adistribution over (S, x, z) let x be the coset representative of
the resulting vector
* Use h(x) to learn the plaintext b

EncCD(b): Deletion:

* Sample (§,x,z) < D » Measure |S,) in Hadamard basis to
e Sampleh « H obtain a vector

e Qutput |Sx’z), Csk (S, h),b @D h(x) * Verification checks thatw € St + z

One-time pad
Public-key encryption

General Recipe commimen

Timed-release encryption

Notation " Decryption given sk:
e (C:|cryptosystem|with decryption key sk Use sktolearnS andh
* H:family offhash functions N - Measure |S, ,) in standard basis, and
* D:adistributionover (5,x,z) > let x be the coset representative of
extractor the resulting vector
withseedh 1o Use h(x) to learn the plaintext b

EncCD(b): Deletion:

* Sample (§,x,z) < D » Measure |S,) in Hadamard basis to
e Sampleh « H obtain a vector

e Qutput |Sx’z), Csk (S, h),b @D h(x) * Verification checks thatw € St + z

One-time pad
Public-key encryption

General Recipe commimen

Timed-release encryption

Notation " Decryption given sk:
e (C:|cryptosystem|with decryption key sk Use sktolearnS andh
* H:family offhash functions N - Measure |S, ,) in standard basis, and
* D:adistributionjover (5,x,z) > let x be the coset representative of
extractor the resulting vector
withseedh 1o Use h(x) to learn the plaintext b

EncCD(b): Deletion:

* Sample (§,x,z) < D » Measure |S,) in Hadamard basis to
e Sampleh « H obtain a vector

e Qutput |Sx’z), Csk (S, h),b @D h(x) * Verification checks thatw € St + z

Instantiatiating the distribution over S

Optimize for...

Instantiatiating the distribution over S

Optimize for...

Practicality

Instantiatiating the distribution over S

Optimize for...

Practicality

S spanned by standard basis
vectors (Wiesner/BB84 states):
0 < {0,1}",S = span{e;};.0,=1

Instantiatiating the distribution over S

Optimize for...

Practicality

S spanned by standard basis
vectors (Wiesner/BB84 states):
0 < {0,1}",S = span{e;};.0,=1

H|xy), ..., HO|xy,),
CSk (61 h), b ® h({xi}i:9i=0)

Instantiatiating the distribution over S

Optimize for...

Practicality

S spanned by standard basis
vectors (Wiesner/BB84 states):
0 < {0,1}",S = span{e;};.0,=1

H|xy), ..., HO|xy,),
CSk (61 h), b ® h({xi}i:9i=0)

No entanglement required

Instantiatiating the distribution over S

Optimize for...

Practicality

S spanned by standard basis
vectors (Wiesner/BB84 states):
0 < {0,1}",S = span{e;};.0,=1

H|xy), ..., HO|xy,),
CSk (61 h), b ® h({xi}i:9i=0)

No entanglement required

[BI20]

Instantiatiating the distribution over S

Optimize for...

Practicality Publicly-Verifiable Deletion

S spanned by standard basis
vectors (Wiesner/BB84 states):
0 < {0,1}",S = span{e;};.0,=1

H|xy), ..., HO|xy,),
CSk (61 h), b ® h({xi}i:9i=0)

No entanglement required

[BI20]

Instantiatiating the distribution over S

Optimize for...

Practicality Publicly-Verifiable Deletion

S spanned by standard basis
vectors (Wiesner/BB84 states):
0 < {0,1}",S = span{e;};.0,=1

S has dimension n — 1,
so St = {0", v}

H|xy), ..., HO|xy,),
CSk (61 h), b ® h({xi}i:9i=0)

No entanglement required

[BI20]

Instantiatiating the distribution over S

Optimize for...

Practicality Publicly-Verifiable Deletion

S spanned by standard basis

. : . _ 1’
vectors (Wiesner/BB84 states): S has dimension n

1 n
8 N {O,l}n,S — Span{el’}i:gi:l SO S — {O ’v}
HO|x,), ..., HOn|x,), H®(|z) + (—1)*|z + v)),
CSR(HJ h), b @ h({xi}i;giz()) Csk(v); b @ X

No entanglement required

[BI20]

Instantiatiating the distribution over S

Optimize for...

Practicality Publicly-Verifiable Deletion

S spanned by standard basis

. : . _ 1’
vectors (Wiesner/BB84 states): S has dimension n

1 n
8 N {O,l}n,S — Span{el’}i:gi:l SO S — {O ’v}
HO|x,), ..., HOn|x,), H®(|z) + (—1)*|z + v)),
CSR(HJ h), b @ h({xi}i;giz()) Csk(v); b @ X

Only two valid deletion

certificates, so publish

No entanglement required
OWF(z), OWF(z + v)

[BI20]

Instantiatiating the distribution over S

Optimize for...

Practicality Publicly-Verifiable Deletion

S spanned by standard basis

. : . _ 1’
vectors (Wiesner/BB84 states): S has dimension n

1 n
8 N {O,l}n,S — Span{el’}i:gi:l SO S — {O ’v}
HO|x,), ..., HOn|x,), H®(|z) + (—1)*|z + v)),
CSR(HJ h), b @ h({xi}i;giz()) Csk(v); b @ X

Only two valid deletion

certificates, so publish

No entanglement required
OWF(z), OWF(z + v)

[BI20] [BKMPW?23]

Instantiatiating the distribution over S

Optimize for...

Practicality

S spanned by standard basis
vectors (Wiesner/BB84 states):
0 < {0,1}",S = span{e;};.0,=1

H|xy), ..., HO|xy,),
CSk (61 h), b ® h({xi}i:9i=0)

No entanglement required

[BI20]

Publicly-Verifiable Deletion

S has dimension n — 1,
so St = {0", v}

HO"(|z) + (=1)*|z + v)),
CSR(U)J b @ X

Only two valid deletion

certificates, so publish
OWF(z), OWF(z + v)

[BKMPW23]

Publicly-Verifiable Ciphertext

Instantiatiating the distribution over S

Optimize for...

Practicality

S spanned by standard basis
vectors (Wiesner/BB84 states):
0 < {0,1}",S = span{e;};.0,=1

H|xy), ..., HO|xy,),
CSk (61 h), b ® h({xi}i:9i=0)

No entanglement required

[BI20]

Publicly-Verifiable Deletion

S has dimension n — 1,
so St = {0", v}

HO"(|z) + (=1)*|z + v)),
CSR(U)J b @ X

Only two valid deletion

certificates, so publish
OWF(z), OWF(z + v)

[BKMPW23]

Publicly-Verifiable Ciphertext

S uniform over all
subspaces

Instantiatiating the distribution over S

Optimize for...

Practicality

S spanned by standard basis
vectors (Wiesner/BB84 states):
0 < {0,1}",S = span{e;};.0,=1

H|xy), ..., HO|xy,),
CSk (61 h), b ® h({xi}i:9i=0)

No entanglement required

[BI20]

Publicly-Verifiable Deletion

S has dimension n — 1,
so St = {0", v}

HO"(|z) + (=1)*|z + v)),
CSR(U)J b @ X

Only two valid deletion

certificates, so publish
OWF(z), OWF(z + v)

[BKMPW23]

Publicly-Verifiable Ciphertext

S uniform over all
subspaces

|Sx,z>r Csk(S,h),b @ h(x)

Instantiatiating the distribution over S

Optimize for...

Practicality

S spanned by standard basis
vectors (Wiesner/BB84 states):
0 < {0,1}",S = span{e;};.0,=1

H|xy), ..., HO|xy,),
CSk (61 h), b ® h({xi}i:9i=0)

No entanglement required

[BI20]

Publicly-Verifiable Deletion

S has dimension n — 1,
so St = {0", v}

HO"(|z) + (=1)*|z + v)),
CSR(U)J b @ X

Only two valid deletion

certificates, so publish
OWF(z), OWF(z + v)

[BKMPW23]

Publicly-Verifiable Ciphertext

S uniform over all
subspaces

|Sx,z>r Csk(S,h),b @ h(x)

Secure even given oracle
accessto S + x

Instantiatiating the distribution over S

Optimize for...

Practicality

S spanned by standard basis
vectors (Wiesner/BB84 states):
0 < {0,1}",S = span{e;};.0,=1

H|xy), ..., HO|xy,),
CSk (61 h), b ® h({xi}i:9i=0)

No entanglement required

[BI20]

Publicly-Verifiable Deletion

S has dimension n — 1,
so St = {0", v}

HO"(|z) + (=1)*|z + v)),
CSR(U)J b @ X

Only two valid deletion

certificates, so publish
OWF(z), OWF(z + v)

[BKMPW23]

Publicly-Verifiable Ciphertext

S uniform over all
subspaces

|Sx,z>r Csk(S,h),b @ h(x)

Secure even given oracle
accessto S + x

[BGGKMRR23]

Outline

3. Security

Security Game

Security Game

(CDEXPe 3¢.D,4, .4, (b) A
 Sample (S,x,z) « D, h « H,and sk
o Ay (|Suz) Cok (S, 1), b B h(x)) - m,st

e Ifm &St + 2z outputh’ « {0,1}
_* Otherwise, output b" « A,(st,sk))

Security Game

(CDEXpC’,}[,Z),a‘ll,o‘lz (b) \ Want: |PI‘[CDEXp(3,}[,D,Uqqu2 (0) = 1] —

* Sample (S,x,z) « D, h « H,and sk Pr[CDExpc,}[,p,ﬂl,ﬂz(l) = 1]| = negl
o Ay (|Sxz) Co(S,h), b @ h(x)) > m,st
e Ifm &St + 2z outputh’ « {0,1}
_* Otherwise, output b" « A,(st,sk))

Security Game

(CDEXpC’,}[,Z),a‘ll,o‘lz (b) \ Want: |PI‘[CDEXp(3,}[,D,Uqqu2 (0) = 1] —

* Sample (S,x,z) « D, h « H,and sk Pr[CDExpC,}[,p,ﬂl,ﬂz(l) = 1]| = negl
o Ay (|Sxz) Co(S,h), b @ h(x)) > m,st
e Ifm &St + 2z outputh’ « {0,1}
_* Otherwise, output b" « A,(st,sk))

History

Security Game

(CDEXPe 3¢.D,4, .4, (b) A

Sample (S,x,z) « D, h « H, and sk

Ay (|Sx.z), Csic(S, 1), b @ h(x)) - m, st
If T & St + z, output b’ « {0,1}

Otherwise, output b’ « A, (st, sk))

History

* [Broadbent, Islam 20]:

* C one-time pad

 H good randomness extractor
* D Wiesner states

* (Aq,A,) unbounded

[w

ant: |Pr[CDExp@,}[JD,A1,Uq2 (0) = 1] —
Pr[CDExpC,}[,p,Al,ﬂz(l) = 1]| = neg

J

Security Game
(CDEXPe 3¢.D,4, .4, (b) A
 Sample (S,x,z) « D, h « H,and sk

o Ay (|Sxz) Co(S,h), b @ h(x)) > m,st
e Ifm &St + 2z outputh’ « {0,1}

_* Otherwise, output b" « A,(st,sk))

History
* [Broadbent, Islam 20]:

* C one-time pad
 H good randomness extractor
* D Wiesner states
* (A4, A,) unbounded
 [Hiroka, Morimae, Nishimaki, Yamakawa 21]:
* C non-committing encryption scheme
 H good randomness extractor
* D Wiesner states
e (A4, A,) computationally bounded

[w

ant: |Pr[CDExpC,}[,D,ﬂ1,Uq2 (0) = 1] —
Pr[CDExpC,}[,p,Al,ﬂz(l) = 1]| = neg

J

Security Game

(CDEXPC,}[,D,JZLAZ (b) \ Want: |Pr[CDEXpC,7—[,D,cA1,JlZ (0) = 1] —
e Sample (S,x,z) « D, h « H,and sk Pr|CDExpe¢ 3 D4, .4,(1) = 1]| = negl
o Ay (|Suz) Cok (S, 1), b B h(x)) - m,st

e Ifm &St + 2z outputh’ « {0,1}
_* Otherwise, output b" « A,(st,sk))

History
e [Broadbent, Islam 20]: * [B, Khurana 23]:
* C one-time pad * (C semantically-secure distribution
* H good randomness extractor e H=6
* D Wiesner states * D Wiesner states
* (A4, A,) unbounded * A, computationally bounded, A, unbounded

 [Hiroka, Morimae, Nishimaki, Yamakawa 21]:
* C non-committing encryption scheme
 H good randomness extractor
D Wiesner states
e (A4, A,) computationally bounded

Security Game

(CDEXPC,}[,D,JZLAZ (b) \ Want: |Pr[CDEXpC,}[,D,cA1,JZZ (0) = 1] —

Sample (S,x,z) « D, h « H,and sk Pr[CDEXpC',}[,D,cAl,JlZ(l) = 1]| = negl
Ay (|Sx.z), Csic(S, 1), b @ h(x)) - m, st

If T & St + z, output b’ « {0,1}
Otherwise, output b’ « A, (st, sk))

History

[Broadbent, Islam 20]: * [B, Khurana 23]:

* C one-time pad * (C semantically-secure distribution

* H good randomness extractor e H=6

* D Wiesner states * D Wiesner states

* (A4, A,) unbounded * A, computationally bounded, A, unbounded
[Hiroka, Morimae, Nishimaki, Yamakawa 21]: + [B, Garg, Goyal, Khurana, Malavolta, Raizes, Roberts 23]

* C non-committing encryption scheme e (C subspace-hiding distribution

 H good randomness extractor - H=6

* D Wiesner states * D subspace states

e (A4, A,) computationally bounded * A4 computationally bounded, A, unbounded

Security Game

(CDEXpC,}[,D,aql,aqz (b) \ Want: |Pr[CDEXpC,}[,D,cA1,JZZ (O) = 1] —
e Sample (S,x,z) « D, h « H,and sk Pr[CDEXpC',}[,D,cAl,JlZ(l) — 1]| = negl
© (|Sx'z>' Cs(S,h),b @ h(x)) — st Note: [Unruh 13] showed similar statement for a
« Ifm &St + 2z outputh' « {0,1} slightly different template supporting quantum
k Otherwise, output b’ « A, (st, sk)) certificates of deletion
History
e [Broadbent, Islam 20]: * [B, Khurana 23]:
* C one-time pad * (C semantically-secure distribution
* H good randomness extractor e H=6
* D Wiesner states * D Wiesner states
* (A4, A,) unbounded * A, computationally bounded, A, unbounded
* [Hiroka, Morimae, Nishimaki, Yamakawa 21]: < [B, Garg, Goyal, Khurana, Malavolta, Raizes, Roberts 23]
* C non-committing encryption scheme e (C subspace-hiding distribution
 H good randomness extractor - H=6
* D Wiesner states * D subspace states

e (A4, A,) computationally bounded * A4 computationally bounded, A, unbounded

Example Proof

Example Proof

e Let C be a computationally-hiding statistically-binding commitment
e Let H =@ (unseeded)

* Let D sample a uniformly random (S, x, z)

* Let A4 be computationally bounded and A, be unbounded

Example Proof

e Let C be a computationally-hiding statistically-binding commitment
e Let H =@ (unseeded)

* Let D sample a uniformly random (S, x, z)

* Let A4 be computationally bounded and A, be unbounded

/c/l Hyb,(b) C_h \

Sample (S, x, z)

Com(S),b D; x;, |Sx,z>

1T, St

CfmeSt4z output | LY{(L|

K Otherwise, output st /

Example Proof

e Let C be a computationally-hiding statistically-binding commitment
e Let H =@ (unseeded)

* Let D sample a uniformly random (S, x, z)

* Let A4 be computationally bounded and A, be unbounded

(A Hybo (b) Ch)

Sample (S, x, z)

Com(S),b D; x;, |Sx,z)

1T, St

" ifw @ St + z, output | L){L]
K Otherwise, output st /

Goal: Show that TD(HybO(O), Hybo(l)) = negl

Example Proof

Hybrid 1: Delay the dependence of the experiment on b

/A Hybs (b) ch)

Sample (S, x, z)
Com(S),b’, Sy ;) Sample b’ « {0,1}

7, st

" Ifm ¢ ST+ z output | L)L

Ifb @; x; # b’, output | L){L
\ Otherwise, output st

Example Proof

Hybrid 1: Delay the dependence of the experiment on b

1
TD(Hyb1(0); Hyb1(1)) = 5 TD(Hybo(O); Hybo(l))

/A

Hyb, (b)

Com(S),b’, |Sx 2)

1T, St

Ch)

Sample (S, x, z)

Sample b’ < {0,1}

" Ifm ¢ ST+ z output | L)L
Ifb @; x; # b’, output |

Otherwise, output st

J_y

Example Proof

Hybrid 1: Delay the dependence of the experiment on b

1
TD(Hyb1(0); Hyb1(1)) = 5 TD(Hybo(O); Hybo(l))

/A Hybs (b) ch)

Sample (S, x, z)
Com(S),b’, Sy ;) Sample b’ « {0,1}

1T, St

> 1
If T & S~ + z, output | L)(L] Remains to show that x

If 15@ # b’, output | L] has a lot of conditional
\ Otherwise, output st min-entropy

Example Proof

Want to show: If A(|S,), Com(S)) outputs T € S* + z,
then x has a lot of conditional min-entropy

Example Proof

Want to show: If A(|S,), Com(S)) outputs T € S* + z,
then x has a lot of conditional min-entropy

A(|Sx,z), Com(S)) - 7

Want to show: If A(|S,), Com(S)) outputs T € S* + z,
then x has a lot of conditional min-entropy

Example Proof

A(|Sx,z), Com(S)) — 7
------------------------------- lPurify

> %) ASy.), Com(S)) > 7

x€co(S)

then x has a

lot of conditional min-entropy

EFxam D | e PrOOf [Want to show: If A(|S ,), Com(S)) outputs € S+ + z,

"""""
o’
/

x€co(S)

A(|Sx,z), Com(S)) - 7

............................. [purity

\
|

A(|Sx,z), Com(S)) - 7

-

o

For x € co(S): Uglx) - (—1)V*|v)

vesL

~

Forv € S*: Uglv)—> 2 (—1D)V*|x)

xX€co(S)

J

Example Proof

then x has a lot of conditional min-entropy

[Want to show: If A(|S ,), Com(S)) outputs € S+ + z,

A(|Sx,z), Com(S)) - 7

..............
""""""""""""

;;;;

' \

lPurify
r \
A(|Sx z), Com(S)) » 1

’ L]
'''''
' \

w

-

o

For x € co(S): Uglx) - (—1)V*|v)

vesL

~

Forv € S*: Uglv)—> 2 (—1D)V*|x)

xX€co(S)

J

EFxam D | e PrOOf [Want to show: If A(|S ,), Com(S)) outputs € S+ + z,

then x has a lot of conditional min-entropy

A(|Sx,z), Com(S)) — 7
------------------------------- lPurify

r \

|x A(|Sx,z), Com(S)) - 7

.........................
’ L]
'''''
' \

4)

For x € co(S): Uglx) - (—1)V*|v)

vesL

EFxam D | e PrOOf [Want to show: If A(|S ,), Com(S)) outputs € S+ + z,

then x has a lot of conditional min-entropy

A(|Sx,z), Com(S)) — 7
------------------------------- lPurify

r \

|x A(|Sx,z), Com(S)) - 7

""""""""""""""""""""""
uuuu
' "\

4 N
For x € co(S): Uglx) - (—1)V*|v)
vest
Forv € S+ Uglv) — 2 (—1D)V*|x)
\ xX€co(S) /

Claim: if A given random v + z and outputs T € S* + z,
then m = v 4+ z with overwhelming probability (over S, z)

EFxam D | e PrOOf [Want to show: If A(|S ,), Com(S)) outputs € S+ + z,

then x has a lot of conditional min-entropy

A(|Sx,z), Com(S)) — 7
------------------------------- lPurify

r \

|x A(|Sx,z), Com(S)) - 7

uuuu
' "\

1
ves l Project

4 N
For x € co(S): Uglx) - (—1)V*|v)
vest
Forv € S+ Uglv) — 2 (—1D)V*|x)
\ xX€co(S) /

Claim: if A given random v + z and outputs T € S* + z,

T — z) then m = v + z with overwhelming probability (over S, z)

EFxam D | e PrOOf [Want to show: If A(|S ,), Com(S)) outputs € S+ + z,

then x has a lot of conditional min-entropy

A(|Sx,z), Com(S)) — 7
------------------------------- lPurify

r \

|x A(|Sx,z), Com(S)) - 7

uuuu
' "\

4 N
For x € co(S): Uglx) - (—1)V*|v)
vest
Forv € S+ Uglv) — 2 (—1D)V*|x)
\ xX€co(S) /

Claim: if A given random v + z and outputs T € S* + z,

T — z) then m = v + z with overwhelming probability (over S, z)

EFxam D | e PrOOf [Want to show: If A(|S ,), Com(S)) outputs € S+ + z,

then x has a lot of conditional min-entropy

A(|Sx,z), Com(S)) — 7
------------------------------- lPurify

r \

|x A(|Sx,z), Com(S)) - 7

uuuu
' "\

4 N
For x € co(S): Uglx) - (—1)V*|v)
vest
Forv € S+ Uglv) — 2 (—1D)V*|x)
\ xX€co(S) /

Claim: if A given random v + z and outputs T € S* + z,

T — z) then m = v + z with overwhelming probability (over S, z)

z (_1)(n—z)-x|x> Measuring gives a uniformly random
x € co(S), independent of A’s view

Outline

4. Certifiable deletion of programs

Plan

* (Indistinguishability) obfuscation with certified deletion
* Applications

 Comparison with other notions

Obfuscation with Certified Deletion

Obfuscation with Certified Deletion

Rough goal:

Obfuscation with Certified Deletion

Rough goal:
* Encode a program f into a deletable quantum state

Obfuscation with Certified Deletion

Rough goal:
* Encode a program f into a deletable quantum state
* Before deletion, the program is useful in some way, after deletion it is not

Obfuscation with Certified Deletion

Rough goal:
* Encode a program f into a deletable quantum state
* Before deletion, the program is useful in some way, after deletion it is not

Candidate construction: Sy »), CObE(P[S, f x])
[BGGKMRR23] .
P[S, f](y, v):
* Let x be the coset of S that v belongs to
e letf=f@Dx
* Output f(y)

Obfuscation with Certified Deletion

Rough goal:
* Encode a program f into a deletable quantum state
* Before deletion, the program is useful in some~way, after deletion it is not

Candidate construction: Sy »), CObE(P[S, f x])
[BGGKMRR23] .
P[S, f](y, v):
* Let x be the coset of S that v belongs to
e letf=f@Dx
* Output f(y)

Obfuscation with Certified Deletion

Rough goal:
* Encode a program f into a deletable quantum state
* Before deletion, the program is useful in some way, after deletion it is not

Candidate construction: Sy »), CObE(P[S, f x])
[BGGKMRR23] .
P[S, f](y, v):
* Let x be the coset of S that v belongs to
e letf=f@Dx
* Output f(y)

Correctness: Given any input y, evaluate Obf(P[S, f € x]) on y and in
superposition over S + x to learn f (y)

Obfuscation with Certified Deletion

Rough goal:
* Encode a program f into a deletable quantum state
* Before deletion, the program is useful in some way, after deletion it is not

Candidate construction: Sy »), CObE(P[S, f x])
[BGGKMRR23] .
P[S, f](y, v):
* Let x be the coset of S that v belongs to
e letf=f@Dx
* Output f(y)

Issue with security: By querying on different v € S + x, can potentially learn
evaluations of functions whose description is related to f

Obfuscation with Certified Deletion

Rough goal:
* Encode a program f into a deletable quantum state
* Before deletion, the program is useful in some way, after deletion it is not

Candidate construction: Sy »), CObE(P[S, f x])
[BGGKMRR23] .
P[S, f](y, v):
* Let x be the coset of S that v belongs to
e letf=f@Dx
* Output f(y)

Solution: P should only accept authentic vectors v derived from the state |Sx’z)

Obfuscation with Certified Deletion

Rough goal:
* Encode a program f into a deletable quantum state
* Before deletion, the program is useful in some way, after deletion it is not

Candidate construction: Sy 2), CObE(P[S, T, u, f D x])
[BGGKMRR23]

P[S, T, u, f](y, V):

e Abortifv €T +u

* Let x be the coset of S that v belongs to
e letf=f@x

* Output f(y)

Solution: P should only accept authentic vectors v derived from the state |Sx’z)

Define authentic vectors via a random superspaceT +u D S + x

Obfuscation with Certified Deletion

Rough goal:
* Encode a program f into a deletable quantum state
* Before deletion, the program is useful in some way, after deletion it is not

Candidate construction: Sy 2), CObE(P[S, T, u, f D x])
[BGGKMRR23]

P[S, T, u, f](y,v):

e Abortifv&T +u

* Let x be the coset of S that v belongs to

e letf=f@x

* Output f(y)

Solution: P should only accept authentic vectors v derived from the state |Sx’z)
Define authentic vectors via a random superspaceT +u D S + x
Hard for the adversary to query on any authentic vector notin S + x

Obfuscation with Certified Deletion

If CObf is modeled as a classical oracle:

» Before deletion, evaluator can use the oracle to learn f(y) for any y of their choice

* After deletion (outputting v € S* + z), the evaluator cannot learn anything else from
the oracle even given unbounded queries

Candidate construction: Sy 2), CObE(P[S, T, u, f D x])
[BGGKMRR23]

P[S, T, u, f](y, V):

e Abortifv €T +u

* Let x be the coset of S that v belongs to
e letf=f@x

* Output f(y)

Solution: P should only accept authentic vectors v derived from the state |Sx’z)

Define authentic vectors via a random superspaceT +u D S + x
Hard for the adversary to query on any authentic vector notin S + x

Without Oracles...

Without Oracles...

Indistinguishability obfuscation

Without Oracles...

Indistinguishability obfuscation
* For any two functionally equivalent circuits Cy, C{, Obf(Cy) =, Obf(C;)

Without Oracles...

Indistinguishability obfuscation
* For any two functionally equivalent circuits Cy, C;, Obf(Cy) =, Obf(C,),

Without Oracles...

Indistinguishability obfuscation
* For any two functionally equivalent circuits Cy, C;, Obf(Cy) =, Obf(C,),

Satisfied by a slightly modified construction

Without Oracles...

Indistinguishability obfuscation
* For any two functionally equivalent circuits Cy, C;, Obf(Cy) =, Obf(C,),

Satisfied by a slightly modified construction

Seems like a weak guarantee, but (differing inputs) iO with CD are useful tools:

Without Oracles...

Indistinguishability obfuscation
* For any two functionally equivalent circuits Cy, C;, Obf(Cy) =, Obf(C,),

Satisfied by a slightly modified construction

Seems like a weak guarantee, but (differing inputs) iO with CD are useful tools:
 Two-message delegation with certified deletion

Without Oracles...

Indistinguishability obfuscation
* For any two functionally equivalent circuits Cy, C;, Obf(Cy) =, Obf(C,),

Satisfied by a slightly modified construction

Seems like a weak guarantee, but (differing inputs) iO with CD are useful tools:
 Two-message delegation with certified deletion

A generic compiler from encryption to encryption with revocable secret keys

Encryption with Revocable / Deletable Secret Keys

Gen — pk, vk, |sk)
Enc(pk,m) — ct
Dec(|sk),ct) » m
Del(|sk)) — cert
Ver(vk, cert) - T/L

Encryption with Revocable / Deletable Secret Keys

* Gen — pk, vk, |sk)

* Enc(pk,m) — ct Deletion security: ciphertexts
* Dec(|sk),ct) = m generated after successful deletion
* Del(|sk)) — cert of |sk) are semantically secure

* Ver(vk,cert) - T/1

Encryption with Revocable / Deletable Secret Keys

* Gen — pk, vk, |sk)

* Enc(pk,m) — ct Deletion security: ciphertexts
* Dec(|sk),ct) = m generated after successful deletion
* Del(|sk)) — cert of |sk) are semantically secure

* Ver(vk,cert) - T/1

Simple compiler: |sk) = i0CD(Dec(sk,")) [BGGMKRR23]

Encryption with Revocable / Deletable Secret Keys

* Gen — pk, vk, |sk)

* Enc(pk,m) — ct Deletion security: ciphertexts
* Dec(|sk),ct) = m generated after successful deletion
* Del(|sk)) — cert of |sk) are semantically secure

* Ver(vk,cert) - T/1

Simple compiler: |sk) = i0CD(Dec(sk,")) [BGGMKRR23]

Gives publicly-verifiable revocation if iOCD is publicly verifiable

Encryption with Revocable / Deletable Secret Keys

* Gen — pk, vk, |sk)

* Enc(pk,m) — ct Deletion security: ciphertexts
* Dec(|sk),ct) = m generated after successful deletion
* Del(|sk)) — cert of |sk) are semantically secure

* Ver(vk,cert) - T/1

Simple compiler: |sk) = i0CD(Dec(sk,:)) [BGGMKRR23]
Gives publicly-verifiable revocation if iOCD is publicly verifiable
Privately-verifiable revocation from standard assumptions:

[Kitagawa, Nishimaki 22], [Agarwal, Kitagawa, Nishimaki, Yamada,
Yamakawa 23], [Ananth, Poremba, Vaikuntanathan 23]

Related Notions

</>]

“working” copy
of a program

certificate derived
from program

Hard for the adversary to produce...

& publicly verifiable

& privately verifiable

Related Notions

</>]

“working” copy
of a program

Copy Protection:
[Aaronson 09]

certificate derived
from program

Hard for the adversary to produce...

</>]

</>]

& publicly verifiable

& privately verifiable

Related Notions

Copy Protection:
[Aaronson 09]

Copy Detection / Infinite-Term Secure Software Leasing:
[Ananth, La Placa 21], [Aaronson, Liu, Liu, Zhandry, Zhang 22]

</>]

Finite-Term Secure Software Leasing:

“working” copy
of a program

[AL21]

certificate derived
from program

Hard for the adversary to produce...

</>]

</>]

& publicly verifiable

& privately verifiable

Related Notions

Copy Protection:
[Aaronson 09]

Publicly-Verifiable Deletion / Revocation:

[BGGKMRR23]

Privately-Verifiable Deletion / Revocation:

[KN22], [AKNYY23], [APV23]

Copy Detection / Infinite-Term Secure Software Leasing:
[Ananth, La Placa 21], [Aaronson, Liu, Liu, Zhandry, Zhang 22]

Finite-Term Secure Software Leasing:

“working” copy
of a program

</>]

[AL21]

certificate derived
from program

Hard for the adversary to produce...

</>]

</>]

</>]

</>]

</>

& publicly verifiable

& privately verifiable

Future Directions

Future Directions

* Prove the security of CDEXpe 3¢ p,4,,.4, When

Future Directions

* Prove the security of CDEXpe 3¢ p,4,,.4, When
* Encoding super-logarithmic bits per subspace state

Future Directions

* Prove the security of CDEXpe 3¢ p,4,,.4, When
* Encoding super-logarithmic bits per subspace state
* Cis any semantically-secure distribution and H is a good seeded randomness
extractor

Future Directions

* Prove the security of CDEXpe 3¢ p,4,,.4, When

* Encoding super-logarithmic bits per subspace state
* Cis any semantically-secure distribution and H is a good seeded randomness
extractor

* Robustness to noise (beyond one-time pad [BI20])

Future Directions

* Prove the security of CDEXpe 3¢ p,4,,.4, When
* Encoding super-logarithmic bits per subspace state

* Cis any semantically-secure distribution and H is a good seeded randomness
extractor

* Robustness to noise (beyond one-time pad [BI20])

* Publicly-verifiable revocation/deletion without post-quantum iO

Future Directions

Prove the security of CDExp¢ 3 .4, .4, When
* Encoding super-logarithmic bits per subspace state
* Cis any semantically-secure distribution and H is a good seeded randomness
extractor

Robustness to noise (beyond one-time pad [B120])

Publicly-verifiable revocation/deletion without post-quantum iO

More rigorous understanding of the relationship between unclonable primitives from
previous slide ([Ananth, Kaleoglu, Liu 23])

	Slide 1: Tutorial Talk: Certified Deletion
	Slide 2: Outline
	Slide 3: Outline
	Slide 4: Certified Deletion: Cloud Storage
	Slide 5: Certified Deletion: Cloud Storage
	Slide 6: Certified Deletion: Cloud Storage
	Slide 7: Certified Deletion: Cloud Storage
	Slide 8
	Slide 9: Certified Deletion: Cloud Storage
	Slide 10: Certified Deletion: Cloud Storage
	Slide 11: Certified Deletion: Cloud Storage
	Slide 12: Certified Deletion: Cloud Storage
	Slide 13: Certified Deletion: Cloud Storage
	Slide 14: Certified Deletion: Delegation
	Slide 15: Certified Deletion: Delegation
	Slide 16: Certified Deletion: Delegation
	Slide 17: Certified Deletion: Delegation
	Slide 18: Certified Deletion: Delegation
	Slide 19: Certified Deletion: Timed-Release Encryption
	Slide 20: Certified Deletion: Timed-Release Encryption
	Slide 21: Certified Deletion: Timed-Release Encryption
	Slide 22: Certified Deletion: Timed-Release Encryption
	Slide 23: Certified Deletion: Timed-Release Encryption
	Slide 24: Certified Deletion: Timed-Release Encryption
	Slide 25: Certified Deletion: Timed-Release Encryption
	Slide 26: Outline
	Slide 27: Approach
	Slide 28: Approach
	Slide 29: Approach
	Slide 30: Approach
	Slide 31: Approach
	Slide 32: Approach
	Slide 33: General Recipe
	Slide 34: General Recipe
	Slide 35: General Recipe
	Slide 36: General Recipe
	Slide 37: General Recipe
	Slide 38: General Recipe
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47: Instantiatiating the distribution over cap S
	Slide 48: Instantiatiating the distribution over cap S
	Slide 49: Instantiatiating the distribution over cap S
	Slide 50: Instantiatiating the distribution over cap S
	Slide 51: Instantiatiating the distribution over cap S
	Slide 52: Instantiatiating the distribution over cap S
	Slide 53: Instantiatiating the distribution over cap S
	Slide 54: Instantiatiating the distribution over cap S
	Slide 55: Instantiatiating the distribution over cap S
	Slide 56: Instantiatiating the distribution over cap S
	Slide 57: Instantiatiating the distribution over cap S
	Slide 58: Instantiatiating the distribution over cap S
	Slide 59: Instantiatiating the distribution over cap S
	Slide 60: Instantiatiating the distribution over cap S
	Slide 61: Instantiatiating the distribution over cap S
	Slide 62: Instantiatiating the distribution over cap S
	Slide 63: Outline
	Slide 64: Security Game
	Slide 65: Security Game
	Slide 66: Security Game
	Slide 67: Security Game
	Slide 68: Security Game
	Slide 69: Security Game
	Slide 70: Security Game
	Slide 71: Security Game
	Slide 72: Security Game
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80: Example Proof
	Slide 81: Example Proof
	Slide 82: Example Proof
	Slide 83: Example Proof
	Slide 84: Example Proof
	Slide 85: Example Proof
	Slide 86: Example Proof
	Slide 87: Example Proof
	Slide 88: Example Proof
	Slide 89: Example Proof
	Slide 90: Outline
	Slide 91: Plan
	Slide 92: Obfuscation with Certified Deletion
	Slide 93: Obfuscation with Certified Deletion
	Slide 94: Obfuscation with Certified Deletion
	Slide 95: Obfuscation with Certified Deletion
	Slide 96: Obfuscation with Certified Deletion
	Slide 97: Obfuscation with Certified Deletion
	Slide 98: Obfuscation with Certified Deletion
	Slide 99: Obfuscation with Certified Deletion
	Slide 100: Obfuscation with Certified Deletion
	Slide 101: Obfuscation with Certified Deletion
	Slide 102: Obfuscation with Certified Deletion
	Slide 103: Obfuscation with Certified Deletion
	Slide 104: Without Oracles…
	Slide 105: Without Oracles…
	Slide 106: Without Oracles…
	Slide 107: Without Oracles…
	Slide 108: Without Oracles…
	Slide 109: Without Oracles…
	Slide 110: Without Oracles…
	Slide 111: Without Oracles…
	Slide 112: Encryption with Revocable / Deletable Secret Keys
	Slide 113: Encryption with Revocable / Deletable Secret Keys
	Slide 114: Encryption with Revocable / Deletable Secret Keys
	Slide 115: Encryption with Revocable / Deletable Secret Keys
	Slide 116: Encryption with Revocable / Deletable Secret Keys
	Slide 117: Related Notions
	Slide 118: Related Notions
	Slide 119: Related Notions
	Slide 120: Related Notions
	Slide 121: Future Directions
	Slide 122: Future Directions
	Slide 123: Future Directions
	Slide 124: Future Directions
	Slide 125: Future Directions
	Slide 126: Future Directions
	Slide 127: Future Directions

