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* Server can compute and return f (D) along with a proof
erased all other information about D

[Broadbent, Islam 20]
[Poremba 23]

[B, Garg, Goyal, Khurana,
Malavolta, Raizes, Roberts 23]
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* Modularize: think about the quantum information and crypto
components separately

* Take advantage of the uncertainty principle

* We need states that can simultaneously encode information in two
conjugate bases
* One basis will encode plaintext information
* The other will encode valid deletion certificates
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representatives of S

[CO(S): a set of coset]

For a subspace S c % and vectors x € co(S), z € co(§%), define

1
|Sx,z> = —,—Z(—1)5°Z|S + x) Use x to hide the plaintext
|S| SES
H®"I
1 . .
|Szl,x) = (—1)5*|s+z)  Use z as certificate of deletion

V |SJ_| sesl

Uncertainty principle: A(|S,,) # (s€S +x,s' €St +2)

(if S, x, z are sufficiently random)
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S uniform over all
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e Let C be a computationally-hiding statistically-binding commitment
e Let H =@ (unseeded)

* Let D sample a uniformly random (S, x, z)

* Let A4 be computationally bounded and A, be unbounded

(A Hybo (b) Ch )

Sample (S, x, z)

Com(S),b D; x;, |Sx,z)

1T, St

" ifw @ St + z, output | L){L]
K Otherwise, output st /

Goal: Show that TD(HybO(O), Hybo(l)) = negl
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* (Indistinguishability) obfuscation with certified deletion
* Applications

 Comparison with other notions
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If CObf is modeled as a classical oracle:

» Before deletion, evaluator can use the oracle to learn f(y) for any y of their choice

* After deletion (outputting v € S* + z), the evaluator cannot learn anything else from
the oracle even given unbounded queries
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[BGGKMRR23]
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* Output f(y)
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* For any two functionally equivalent circuits Cy, C;, Obf(Cy) =, Obf(C,),

Satisfied by a slightly modified construction

Seems like a weak guarantee, but (differing inputs) iO with CD are useful tools:
 Two-message delegation with certified deletion

A generic compiler from encryption to encryption with revocable secret keys
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Gen — pk, vk, |sk)
Enc(pk,m) — ct
Dec(|sk),ct) » m
Del(|sk)) — cert
Ver(vk, cert) - T/L
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Encryption with Revocable / Deletable Secret Keys

* Gen — pk, vk, |sk)

* Enc(pk,m) — ct Deletion security: ciphertexts
* Dec(|sk),ct) = m generated after successful deletion
* Del(|sk)) — cert of |sk) are semantically secure

* Ver(vk,cert) - T/1

Simple compiler: |sk) = i0CD(Dec(sk,:)) [BGGMKRR23]
Gives publicly-verifiable revocation if iOCD is publicly verifiable
Privately-verifiable revocation from standard assumptions:

[Kitagawa, Nishimaki 22], [Agarwal, Kitagawa, Nishimaki, Yamada,
Yamakawa 23], [Ananth, Poremba, Vaikuntanathan 23]
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Copy Protection:
[Aaronson 09]

Copy Detection / Infinite-Term Secure Software Leasing:
[Ananth, La Placa 21], [Aaronson, Liu, Liu, Zhandry, Zhang 22]
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Related Notions

Copy Protection:
[Aaronson 09]

Publicly-Verifiable Deletion / Revocation:

[BGGKMRR23]

Privately-Verifiable Deletion / Revocation:

[KN22], [AKNYY23], [APV23]

Copy Detection / Infinite-Term Secure Software Leasing:
[Ananth, La Placa 21], [Aaronson, Liu, Liu, Zhandry, Zhang 22]

Finite-Term Secure Software Leasing:

“working” copy
of a program

</>]

[AL21]

certificate derived
from program

Hard for the adversary to produce...

</>]

</>]

</>]

</>]

</>

& publicly verifiable

& privately verifiable
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Future Directions

Prove the security of CDExp¢ 3 .4, .4, When
* Encoding super-logarithmic bits per subspace state
* Cis any semantically-secure distribution and H is a good seeded randomness
extractor

Robustness to noise (beyond one-time pad [B120])

Publicly-verifiable revocation/deletion without post-quantum iO

More rigorous understanding of the relationship between unclonable primitives from
previous slide ([Ananth, Kaleoglu, Liu 23])
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